Skip to main content

Advertisement

Log in

Alterations in mitochondrial number and function in Alzheimer’s disease fibroblasts

  • Short Communication
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is observed in brains of Alzheimer’s Disease patients as well as many rodent model systems including those modeling mutations in preseinilin 1 (PSEN1). The aim of our study was to characterize mitochondrial function and number in fibroblasts from AD patients with PSEN1 mutations. We used biochemical assays, metabolic profiling and fluorescent labeling to assess mitochondrial number and function in fibroblasts from three AD patients compared to fibroblasts from three controls. The mutant AD fibroblasts had increased Aβ42 relative to controls along with reduction in ATP, basal and maximal mitochondrial respiration as well as impaired spare mitochondrial respiratory capacity. Fluorescent staining and expression of genes encoding electron transport chain enzymes showed diminished mitochondrial content in the AD fibroblasts. This study demonstrates that mitochondrial dysfunction is observable in AD fibroblasts and provides evidence that this model system could be useful as a tool to screen disease-modifying compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Review article: genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial enzyme-deficient Hippocampal neurons and choroidal cells in Ad. Neurology 57:260–64

    Article  CAS  PubMed  Google Scholar 

  • Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci 107:18670–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elder GA, Gama Sosa MA, Gasperi R, Dickstein DL, Hof PR (2010) Presenilin transgenic mice as models of Alzheimer’s disease. Brain Struct Funct 214:127–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fayed N, Modrego PJ, Rojas-Salinas G, Aguilar K (2011) Brain glutamate levels Are decreased in Alzheimer’s disease: a magnetic resonancespectroscopy study. Am J Alzheimers Dis Other Demen 26(6):450–6

    Article  PubMed  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer diseas. J Neural Transm 105:885–70

    Google Scholar 

  • Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci 91:3270–3274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston JA, Cowburn RF, Norgren S, Wiehager B, Venizelos N, Winblad B, Vigo-Pelfrey C, Schenk D, Lannfelt L, O’Neill C (1994) Increased beta-amyloid release and levels of amyloid precursor protein (App) in fibroblast cell lines from family members with the swedish Alzheimer’s disease App670/671 mutation. FEBS Lett 354(3):274–8

    Article  CAS  PubMed  Google Scholar 

  • Lalande J, Halley H, Balayssac S, Gilard V, Déjean S, Martino R, Francés B, Lassalle JM, Malet-Martino M (2014) 1h Nmr metabolomic signatures in five brain regions of the Aβppswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1):121–43

    CAS  PubMed  Google Scholar 

  • Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, Weiner MW, Jagust WJ (2011) Alzheimer’s disease neuroimaging, associations between cognitive, functional, and Fdg-Pet measures of decline in Ad and Mci. Neurobiol Aging 32:1207–18

    Article  PubMed Central  PubMed  Google Scholar 

  • Leuner K, Müller WE, Reichert AS (2012) From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol Neurobiol 46(1):186–93

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yao J, Chen Y, Pang L, Li H, Cao Z, You K, Dai H, Wu R (2014) Hippocampal neurochemical changes in senescent mice induced with chronic injection of D-galactose and nano2: an in vitro high-resolution Nmr spectroscopy study at 9.4t. PLoS One 9(2):e88562

  • Nagy Z, Esiri MM, LeGris M, Matthews PM (1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Nauropathol 97:346–54

    Article  CAS  Google Scholar 

  • Parker WD, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44:1090–96

    Article  PubMed  Google Scholar 

  • Peterson C, Goldman JE (1986) Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors (Aging/DNA/Glucose and Glutamine Metabolism/Mitochondria/Proteln). Neurobiology 83:2758–62

  • Rhein V, Baysang G, Rao S, Meier F, Bonert A, Müller-Spahn F, Eckert A (2009a) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29(6–7):1063–71

    Article  CAS  PubMed  Google Scholar 

  • Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Bluethmann H, Ozmen L, Drose S, Brandt U et al (2009b) Amyloidbeta and Tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci 47:20057–62

    Article  Google Scholar 

  • Shokouhi S, Claassen D, Kang H, Ding Z, Rogers B, Mishra A, Riddle WR (2013) For the Alzheimer’s disease neuroimaging, longitudinal progression of cognitive decline correlates with changes in the spatial pattern of brain 18f-Fdg Pet. J Nucl Med 54:1564–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sims NR, Finegan JM, Blass JP (1987) Altered metabolic properties of cultured skin fibroblasts in alzheimer's disease. Ann Neurol 21(5):451–457

  • Sproul AA, Jacob S, Pre D, Kim SH, Nestor MW, Navarro-Sobrino M, Santa-Maria I, Zimmer M, Aubry S, Steele JW, Kahler DJ, Dranovsky A, Arancio O, Crary JF, Gandy S, Noggle SA (2014) Characterization and molecular profiling of Psen1 familial Alzheimer’s disease Ipsc-derived neural progenitors. PLoS One 9(1):e84547

    Article  PubMed Central  PubMed  Google Scholar 

  • Swerdlow R (2007) Treating neurodegeneration by modifying mitochondria: potential solutions to a “complex” problem. Antioxid Redox Signal 9:1591–603

  • Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, Opala G (2013) Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci 335(1–2):58–63

    Article  PubMed  Google Scholar 

  • Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira LM, Loureiro AP, de Souza-Talarico JN, Smid J, Porto CS, Bottino CM, Nitrini R, Barros SB, Camarini R, Marcourakis T (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 26:59–68

    CAS  PubMed  Google Scholar 

  • Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–36

    Article  CAS  PubMed  Google Scholar 

  • Yamane T, Ikari Y, Nishio T, Ishii K, Ishii K, Kato T, Ito K, Silverman DH, Senda M, Asada T, Arai H, Sugishita M, Iwatsubo T, The J-ADNI Study Group (2013) Visual–statistical interpretation of 18f-Fdg-Pet images for characteristic Alzheimer patterns in a multicenter study: inter-rater concordance and relationship to automated quantitative evaluation. Am J Neuroradiol 35(2):244–9

    Article  PubMed  Google Scholar 

  • Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci 106(34):14670–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong X, Shi H, Shen Z, Hou L, Luo X, Chen X, Liu S, Zhang Y, Zheng D, Tan Y, Huang G, Fang Y, Zhang H, Mu N, Chen J, Wu R, Ning Y (2014) 1h-proton magnetic resonance spectroscopy differentiates dementia with Lewy bodies Fromalzheimer’s disease. J Alzheimers Dis 40(4):953–66

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Department of Veterans Affairs Merit Review grant awarded to J. Quinn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora E. Gray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gray, N.E., Quinn, J.F. Alterations in mitochondrial number and function in Alzheimer’s disease fibroblasts. Metab Brain Dis 30, 1275–1278 (2015). https://doi.org/10.1007/s11011-015-9667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9667-z

Keywords

Navigation