Skip to main content

Advertisement

Log in

Region-specific changes in activities of cell death-related proteases and nitric oxide metabolism in rat brain in a chronic unpredictable stress model

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Effects of a chronic combined unpredictable stress on activities of two cell death-related proteases, calpain and cathepsin B, were studied along with indices of nitrergic system in rat brain structures. Male Wistar rats were subjected to a 2-week-long combined stress (combination of unpaired flash light and moderate footshock associated with a white noise session). Stress resulted in a significant loss in the body and thymus weight and increased defecation in the open field test, though neither motor and exploratory activity, nor plasma corticosterone differed from the respective control levels. Decreased calpain activity and increased cathepsin B activity were demonstrated in the hippocampus of stressed rats (previously we have shown that caspase-3 activity was significantly suppressed in the brain of rats subjected to same type of stress). A significant reduction in the number of NOS-containing neurons was accompanied by a chronic stressinduced decline in NOS activity in the neocortex. Similar changes were observed in the hippocampus. However, levels of NO metabolites were elevated in both structures. Thus, stress-induced structural modifications in the brain may be mediated by disturbances in the nitrergic system and increased lysosomal proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airapetyanz MG, Yakovlev AA, Levshina IP, Vorontsova ON, Stepanichev MYu, Onufriev MV, Lazareva NA, Gulyaeva NV (2007) Studies of mechanisms involved in neuronal cell death induced by chronic stress in rats. Neurochem J 1:86–92

    Article  Google Scholar 

  • Aleksandrovskaya MM, Kol’tsova AV (1978) Morphologic changes in the sensomotor cortex in experimental neurosis. Zh Vyssh Nerv Deiat im IP Pavlova 28:529–537

    Google Scholar 

  • Aleksandrovskaya MM, Kol’tsova AV (1980) Structural and functional reorganization of neurons and glia in the sensomotor cortex of the cerebral cortex in experimental neurosis. Zh Vyssh Nerv Deiat im IP Pavlova 30:747–754

    Google Scholar 

  • Arbel I, Kadar T, Silbermann M, Levy A (1994) The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats. Brain Res 657:227–235

    Article  PubMed  CAS  Google Scholar 

  • Armario A, Castellanos JM, Balasch J (1984) Effect of acute and chronic psychogenic stress on corticoadrenal and pituitary-thyroid hormones in male rats. Horm Res 20:241–245

    Article  PubMed  CAS  Google Scholar 

  • Bachis A, Cruz MI, Nosheny RL, Mocchetti I (2008) Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett 442:104–108

    Article  PubMed  CAS  Google Scholar 

  • Baumann R, Hecht K (1977) Stress. Neurose und Herz-Kreislauf, Berlin, VEB Deutscher Verlag der Wissenschaften

    Google Scholar 

  • Bizat N, Hermel JM, Boyer F, Jacquard C, Créminon C, Ouary S, Escartin C, Hantraye P, Kajewski S, Brouillet E (2003) Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J Neurosci 23:5020–5030

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86:9030–9033

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8:3–11

    Article  PubMed  CAS  Google Scholar 

  • Calzà L, Giardino L, Ceccatelli S (1993) NOS mRNA in the paraventricular nucleus of young and old rats after immobilization stress. Neuroreport 4:627–630

    Article  PubMed  Google Scholar 

  • Chernaya VI, Pedan LF, Zozulya GI (1999) Structural/functional changes in the brain lysosomal-vacuolar apparatus related to chronic emotional stress. Neurophysiology 31:292–293

    Article  Google Scholar 

  • Chvanov M, Gerasimenko OV, Petersen OH, Tepikin AV (2006) Calcium-dependent release of NO from intracellular S-nitrosothiols. EMBO J 25:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Clement AB, Gamerdinger M, Tamboli IY, Lütjohann D, Walter J, Greeve I, Gimpl G, Behl C (2009) Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function. J Neurochem 111:669–682

    Article  PubMed  CAS  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • De Boer SF, Koopmans SJ, Slangen JL, Van der Gugten J (1990) Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of interstressor interval length. Physiol Behav 47:1117–1124

    Article  PubMed  Google Scholar 

  • Gulyaeva NV (2003) Non-apoptotic functions of caspase-3 in nervous tissue. Biochemistry (Mosc) 68:1171–1180

    Article  CAS  Google Scholar 

  • Gulyaeva NV, Levshina IP, Obidin AB (1989) Indices of free-radical oxidation of lipids and antiradical protection of the brain–neurochemical correlates of development of the general adaptation syndrome. Neurosci Behav Physiol 19:376–382

    Article  PubMed  CAS  Google Scholar 

  • Harvey BH, Oosthuizen F, Brand L, Wegener G, Stein DJ (2004) Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berl) 175:494–502

    Article  CAS  Google Scholar 

  • Hecht K, Poppei M (1977) Zur rolle des umweltfaktors in der dialektischen gesundheits-krankheitsbeziehung eines organismus. Forschungsverband Herz-Kreislaufkrankheiten, Berlin

    Google Scholar 

  • Heine VM, Zareno J, Maslam S, Joëls M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21:1304–1314

    Article  PubMed  Google Scholar 

  • Hwang SY, Yoo BC, Jung JW, Oh ES, Hwang JS, Shin JA, Kim SY, Cha SH, Han IO (2009) Induction of glioma apoptosis by microglia-secreted molecules: The role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793:1656–1668

    Article  PubMed  CAS  Google Scholar 

  • Kant GJ, Eggleston T, Landman-Roberts L, Kenion CC, Driver GC, Meyerhoff JL (1985) Habituation to repeated stress is stressor specific. Pharmacol Biochem Behav 22:631–634

    Article  PubMed  CAS  Google Scholar 

  • Kant GJ, Leu JR, Anderson SM, Mougey EH (1987) Effects of chronic stress on plasma corticosterone, ACTH and prolactin. Physiol Behav 40:775–779

    Article  PubMed  CAS  Google Scholar 

  • Krukoff TL, Khalili P (1997) Stress-induced activation of nitric oxide-producing neurons in the rat brain. J Comp Neurol 377:509–519

    Article  PubMed  CAS  Google Scholar 

  • Kucherenko RP, Usova IP, Gilerovich EG (1983) Morphofunctional characteristics of the associative region of the cerebral cortex in experimental neuroses in the dog. Zh Vyssh Nerv Deiat im IP Pavlova 33:508–513

    CAS  Google Scholar 

  • Lau A, Arundine M, Sun HS, Jones M, Tymianski M (2006) Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26:11540–11553

    Article  PubMed  CAS  Google Scholar 

  • Lei A, Adachi N, Nagaro T, Arai T (1999) Measurement of total nitric oxide metabolite (NOx-) levels in vivo. Brain Res Protoc 4:415–419

    Article  CAS  Google Scholar 

  • Levina OL, Drescher Y, Gulyaeva NV, Levshina IP (1986) Local cerebral hemodynamics in albino rats in the late stages after termination of neurotization (induction of neurosis). Neurosci Behav Physiol 16:471–475

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Pober JS (2005) The cathepsin B death pathway contributes to TNF plus IFN-gamma-mediated human endothelial injury. J Immunol 75:1858–1866

    Google Scholar 

  • Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (1999) Neuronal protection and destruction by NO. Cell Death Differ 6:943–951

    Article  PubMed  CAS  Google Scholar 

  • López-Figueroa MO, Itoi K, Watson SJ (1998) Regulation of nitric oxide synthase messenger RNA expression in the rat hippocampus by glucocorticoids. Neuroscience 87:439–446

    Article  PubMed  Google Scholar 

  • Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czéh B, De Kloet ER, Fuchs E (2001) Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 14:161–166

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Gleichman AJ (2007) Picking up the pieces: the roles of functional remnants of calpain-mediated proteolysis. Neuron 53:317–319

    Article  PubMed  CAS  Google Scholar 

  • Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Boscá L, Leza JC (2001a) Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 76:532–538

    Article  PubMed  CAS  Google Scholar 

  • Madrigal JL, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001b) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    PubMed  CAS  Google Scholar 

  • Maigaard K, Hageman I, Jørgensen A, Jørgensen MB, Wörtwein G (2012) Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala. Neurosci Lett [Epub ahead of print].

  • Manina AA, Khananashvili MM, Lazuko NN (1971) Structural-functional study of the cerebral cortex in experimental neurosis. Zh Vyssh Nerv Deiat im IP Pavlova 21:686–691

    CAS  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • McEwen BS (2009) The brain is the central organ of stress and adaptation. Neuroimage 47:911–913

    Article  PubMed  Google Scholar 

  • Michetti M, Salamino F, Melloni E, Pontremoli S (1995) Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun 207:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Misko TR, Schilling RJ, Salvemini D, Moore WM, Currie MG (1993) A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem 214:11–16

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi K, Kunishita T, Chui DH, Tabira T (1992) Stress induces neuronal death in the hippocampus of castrated rats. Neurosci Let 138:157–160

    Article  CAS  Google Scholar 

  • Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A, Chen T, Jia W (2008) Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett 582:2627–2636

    Article  PubMed  CAS  Google Scholar 

  • Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74:785–791

    Article  PubMed  CAS  Google Scholar 

  • Onufriev MV, Stepanichev MYu, Mitrokhina OS, Moiseeva YuV, Lazareva NA, Gulyaeva NV (1999) Effects of oxidative stress on brain nitric oxide synthase activity in vivo and in vitro. Rus Physiol J 85:531–538

    CAS  Google Scholar 

  • Poeggel G, Lange E, Haase C, Metzger M, Gulyaeva N, Braun K (1999) Maternal separation and early social deprivation in Octodon degus: quantitative changes of NADPH-diaphorase reactive neurons in the prefrontal cortex and nucleus accumbens. Neuroscience 94:497–504

    Article  PubMed  CAS  Google Scholar 

  • Poeggel G, Haase C, Gulyaeva N, Braun K (2000) Quantitative changes of NADPH-diaphorase-reactive neurons in the brain of Octodon degus after periodic maternal separation and early social isolation. Neuroscience 99:381–387

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320

    Article  PubMed  Google Scholar 

  • Reagan LP, McKittrick CR, McEwen BS (1999) Corticosterone and phenytoin reduce neuronal nitric oxide synthase messenger RNA expression in rat hippocampus. Neuroscience 91:211–219

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5:1222–1227

    PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munk AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Schwarz PM, Gierten B, Boissel JP, Förstermann U (1998) Expressional down-regulation of neuronal-type nitric oxide synthase I by glucocorticoids in N1E-115 neuroblastoma cells. Mol Pharmacol 54:258–263

    PubMed  CAS  Google Scholar 

  • Selye H (1974) Stress without distress. JB Lippincott, New York

    Google Scholar 

  • Snigdha S, Smith ED, Prieto GA, Cotman CW (2012) Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 28:14–24

    Article  PubMed  CAS  Google Scholar 

  • Stepanichev MYu, Onufriev MV, Yakovlev AA, Khrenov AI, Peregud DI, Vorontsova ON, Lazareva NA, Gulyaeva NV (2008) Amyloid-beta (25-35) increases activity of neuronal NO-synthase in rat brain. Neurochem Int 52:1114–1124

    Article  PubMed  CAS  Google Scholar 

  • Tishkina AO, Levshina IP, Lazareva NA, Passikova NV, Stepanichev MY, Ajrapetyanz MG, Gulyaeva NV (2009) Chronic stress induces nonapoptotic neuronal death in the rat hippocampus. Dokl Biol Sci 428:403–406

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90:246–255

    Article  PubMed  CAS  Google Scholar 

  • Vogel WH, Jensh R (1988) Chronic stress and plasma catecholamine and corticosterone levels in male rats. Neurosci Lett 87:183–188

    Article  PubMed  CAS  Google Scholar 

  • Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26

    Article  PubMed  Google Scholar 

  • Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588:341–345

    Article  PubMed  CAS  Google Scholar 

  • Weber CM, Eke BC, Maines MD (1994) Corticosterone regulates heme oxygenase-2 and NO synthase transcription and protein expression in rat brain. J Neurochem 63:953–962

    Article  PubMed  CAS  Google Scholar 

  • Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69

    Article  PubMed  CAS  Google Scholar 

  • Woolley C, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    Article  PubMed  CAS  Google Scholar 

  • Wu HY, Lynch DR (2006) Calpain and synaptic function. Mol Neurobiol 33:215–236

    Article  PubMed  Google Scholar 

  • Yakovlev AA, Gulyaeva NV (2011) Pleiotropic functions of brain proteinases: methodological considerations and search for caspase substrates. Biochemistry 76:1079–1086

    PubMed  CAS  Google Scholar 

  • Yakovlev AA, Gorokhovatsky AY, Onufriev MV, Beletsky IP, Gulyaeva NV (2008) Brain cathepsin B cleaves a caspase substrate. Biochemistry 73:332–336

    PubMed  CAS  Google Scholar 

  • Yamashima T (2004) Ca2+-dependent proteases in ischemic neuronal death: a conserved calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 36:285–293

    Article  PubMed  CAS  Google Scholar 

  • Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103:1843–1854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of Russian Academy of Sciences Presidium program “Fundamental Sciences for Medicine” and a grant of Division of Physiology and Fundamental Medicine Russian Academy of Sciences program “Integrative Physiology”.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Gulyaeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tishkina, A., Rukhlenko, A., Stepanichev, M. et al. Region-specific changes in activities of cell death-related proteases and nitric oxide metabolism in rat brain in a chronic unpredictable stress model. Metab Brain Dis 27, 431–441 (2012). https://doi.org/10.1007/s11011-012-9328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9328-4

Keywords

Navigation