Skip to main content

Advertisement

Log in

Risk for metabolic syndrome predisposes to alterations in the thalamic metabolism

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Risk factors for the metabolic syndrome (MetS) affect brain function and associate with asymptomatic brain infarctions in healthy individuals. We studied whether MetS risk factors alter cerebral metabolism. Eighteen non-smoking men (36 ± 6years) were stratified into two groups according to their risk of developing the MetS. Individuals in the Risk group had a family history of type 2 diabetes, were pre-obese, had mild hypertension and higher fasting plasma glucose and serum insulin compared to the Control group with no risk factors. N-acetyl aspartate, choline, total creatine (tCr), myo-inositol, and glucose were studied in the thalamus, frontal cortex, and frontal white matter with proton magnetic resonance spectroscopy. The plasma glucose was 13% higher (p < 0.01) in the Risk group, but the brain glucose levels were comparable between the groups. In the Control group, the thalamic tCr correlated with the thalamic glucose level (r = 0.81, p = 0.015). In the Risk group, the tCr was 17% higher (p = 0.006) and correlated with the fasting plasma glucose concentration (r = 0.78, p = 0.013), but not with the thalamic glucose level. In conclusion, the increased tCr level in the Risk group suggests that a family history of type 2 diabetes together with MetS risk factors alters thalamic energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23:469–480

    PubMed  Google Scholar 

  • Arenillas JF, Moro MA, Davalos A (2007) The metabolic syndrome and stroke: potential treatment approaches. Stroke 38:2196–2203

    Article  PubMed  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    Article  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  PubMed  CAS  Google Scholar 

  • Catani M, Mecocci P, Tarducci R, Howard R, Pelliccioli GP, Mariani E, Metastasio A, Benedetti C, Senin U, Cherubini A (2002) Proton magnetic resonance spectroscopy reveals similar white matter biochemical changes in patients with chronic hypertension and early Alzheimer's disease. J Am Geriatr Soc 50:1707–1710

    Article  PubMed  Google Scholar 

  • de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL (2001) Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab 21:483–492

    Article  PubMed  Google Scholar 

  • de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    Article  PubMed  Google Scholar 

  • DeCarli C, Miller BL, Swan GE, Reed T, Wolf PA, Garner J, Jack L, Carmelli D (1999) Predictors of brain morphology for the men of the NHLBI twin study. Stroke 30:529–536

    PubMed  CAS  Google Scholar 

  • Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC (2005) Magnetic resonance spectroscopy. J Neuro-ophthalmol 25:217–226

    Article  Google Scholar 

  • Heilig CW, Stromski ME, Blumenfeld JD, Lee JP, Gullans SR (1989) Characterization of the major brain osmolytes that accumulate in salt-loaded rats. Am J Physiol 257:F1108–F1116

    PubMed  CAS  Google Scholar 

  • Kwon HM, Kim BJ, Lee SH, Choi SH, Oh BH, Yoon BW (2006) Metabolic syndrome as an independent risk factor of silent brain infarction in healthy people. Stroke 37:466–470

    Article  PubMed  Google Scholar 

  • Laaksonen DE, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen TP, Salonen JT (2005) C-reactive protein in the prediction of cardiovascular and overall mortality in middle-aged men: a population-based cohort study. Eur Heart J 26:1783–1789

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari SR, Fatterpekar GM, Castillo M, Mukherji SK (2000) Proton MR spectroscopy of the brain. Semin Ultrasound CT MR 21:434–451

    Article  PubMed  CAS  Google Scholar 

  • Mäkimattila S, Malmberg-Ceder K, Häkkinen AM, Vuori K, Salonen O, Summanen P, Yki-Järvinen H, Kaste M, Heikkinen S, Lundbom N, Roine RO (2004) Brain metabolic alterations in patients with type 1 diabetes–hyperglycemia-induced injury. J Cereb Blood Flow Metab 24:1393–1399

    Article  PubMed  Google Scholar 

  • Manschot SM, Biessels GJ, de Valk H, Algra A, Rutten GE, van der Grond J, Kappelle LJ, on behalf of the Utrecht Diabetic Encephalopathy Study Group (2007) Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes. Diabetologia 50:2388–2397

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, Pan JW, Chu WJ, Newcomer BR, Zhang Y, Orr R, Hetherington HP (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 1H-[13C] magnetic resonance spectroscopy at 4.1T. J Cereb Blood Flow Metab 19:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207

    Article  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    Article  PubMed  Google Scholar 

  • Najarian RM, Sullivan LM, Kannel WB, Wilson PW, D'Agostino RB, Wolf PA (2006) Metabolic syndrome compared with type 2 diabetes mellitus as a risk factor for stroke: the Framingham Offspring Study. Arch Intern Med 166:106–111

    Article  PubMed  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosova K, Terasaki T (2002) The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485

    Article  PubMed  Google Scholar 

  • Prichard JW, Alger JR, Behar KL, Petroff OA, Shulman RG (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc Natl Acad Sci U S A 80:2748–2751

    Article  PubMed  Google Scholar 

  • Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84

    Article  PubMed  CAS  Google Scholar 

  • Seaquist ER, Damberg GS, Tkac I, Gruetter R (2001) The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 50:2203–2209

    Article  PubMed  Google Scholar 

  • Sinha S, Misra A, Kumar V, Jagannathan NR, Bal CS, Pandey RM, Singhania R, Deepak (2004) Proton magnetic resonance spectroscopy and single photon emission computed tomography study of the brain in asymptomatic young hyperlipidaemic Asian Indians in North India show early abnormalities. Clin Endocrinol (Oxf) 61:182–189

    Article  CAS  Google Scholar 

  • Stern MP, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM (2004) Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 27:2676–2681

    Article  PubMed  Google Scholar 

  • van Dijk EJ, Prins ND, Vermeer SE, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM (2005) C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study. Circulation 112:900–905

    Article  PubMed  Google Scholar 

  • Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S (2007) Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res 4:111–116

    Article  PubMed  CAS  Google Scholar 

  • Yudkin JS (1999) Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care 22(Suppl 3):C25–C30

    PubMed  Google Scholar 

  • Virtanen KA, Hirvonen J, Bucci M, Honka M, Nesterov S, Iozzo P, Rinne OJ, Nuutila P (2007) Insulin-stimulated brain glucose uptake is enhanced in subjects with impaired glucose tolerance (IGT). Diabetologia 50(Suppl 1):A0017 (Abstract)

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by grants from Folkhälsan Research Foundation, Finnish Medical Society (Finska Läkaresällskapet), a special governmental grant for health sciences research (no. 5103), Diabetes Research Foundation, Waldemar von Frenckell’s Foundation and Wilhelm and Else Stockmann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Mäkimattila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkilä, O., Lundbom, N., Timonen, M. et al. Risk for metabolic syndrome predisposes to alterations in the thalamic metabolism. Metab Brain Dis 23, 315–324 (2008). https://doi.org/10.1007/s11011-008-9094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9094-5

Keywords

Navigation