Skip to main content

Advertisement

Log in

Intrastriatal Hypoxanthine Reduces Na+,K+-ATPase Activity and Induces Oxidative Stress in the Rats

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the effects of a single intrastriatal injection of hypoxanthine, a metabolite accumulated in Lesch Nyhan disease and possibly involved in its neuropathology, on Na+,K+-ATPase activity, as well as on some parameters of oxidative stress, namely chemiluminescence (an index of lipid peroxidation), total radical-trapping antioxidant parameter—TRAP (an index of total antioxidant capacity of the tissue) and total thiol protein membrane content, in striatum, cerebral cortex and hippocampus of rats. Results show that hypoxanthine significantly decreased Na+,K+-ATPase activity and TRAP while increased chemiluminescence in all ipsislateral structures tested. However, no effect on total thiol protein membrane content was detected. We suggest that hypoxanthine induces oxidative stress in all cerebral structures studied (striatum, hippocampus and cerebral cortex) and that the reduction of Na+,K+-ATPase activity was probably mediated by reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco CS, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2004) Inhibition of Na+,K+-ATPase activity in rat striatum by metabolites accumulated in Lesch Nyhan disease. Int J Devl Neurosci 22:11–17

    Article  CAS  Google Scholar 

  • Bavaresco CS, Chiarani F, Matté C, Wajner M, Netto CA, Wyse ATS (2005) Effect of hypoxanthine on Na+,K+-ATPase activity and some parameters of oxidative stress in rat striatum. Brain Res 1041:198–204

    Article  PubMed  CAS  Google Scholar 

  • Behl C (2005) Oxidative stress in Alzheimer's disease: Implications for prevention and therapy. Subcell Biochem 38:65–78

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein –die binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, De Murtas, M, Pisani A, Stefani A, Sancessario G, Mercuri NB, Bernardi G (1995) Vulnerability of medium spiny striatal neurons to glutamate: role of Na+,K+-ATPase activity. Eur J Neurosci 7:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Calandriello L, Curini R, Pennisi EM, Palladini G (1995) Spongy state (status spongiosus) and inhibition of Na+,K+-ATPase: A pathogenetic theory. Med Hypotheses 44:173–178

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Schmidley JW, Fishman RA, Longar SM (1984) Brain injury, edema and vascular permeability changes induced by oxygen derived free radicals. Neurology 34:315–320

    PubMed  CAS  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986). A direct colorimetric assay for Ca+ -stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Dasheiff RM (1980). Benzodiazepinic treatment for Lesch-Nyhan syndrome? Dev Med Child Neurol 22:101–102

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1994). Ions and energy in mammalian brain. Prog Neurobiol 7:21–29

    Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Golden WC, Brambrink AM, Traystman RJ, Martin LJ (2001) Failure to sustain recovery of Na+,K+-ATPase function is a possible mechanism for striatal neurodegeneration in hypoxic-ischemic newborn piglets. Brain Res Mol Brain Res 81:94–102

    Article  Google Scholar 

  • Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: An assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100

    Article  PubMed  CAS  Google Scholar 

  • Grisar T (1984) Glial and neuronal Na+,K+-pump in epilepsy. Ann Neurol 16 (Suppl.):128–134

    Article  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine and xanthine to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Free radicals, proteins and DNA: Oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  • Halliwell B (2002) Hypothesis: Proteasomal dysfunction: A primary event in neurogeneration that leads to nitrative and oxidative stress and subsequent cell death. Ann NY Acad Sci 962:182–94

    Article  PubMed  CAS  Google Scholar 

  • Harkness RA, McCreanor GM, Watts RW (1988) Lesch-Nyhan syndrome and its pathogenesis: Purine concentrations in plasma and in urine with metabolite profiles in CSF. J Inher Metab Dis 11:239–252

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA, Inagaki C (1998) Cl -- ATPase and Na+/K +- ATPase activities in Alzheimer's disease brains. Neurosci Lett 254:141–144

    Article  PubMed  CAS  Google Scholar 

  • Jamme I, Petit E, Divoux D, Gerbi A, Maixent JM, Nouvelot A (1995) Modulation of mouse cerebral Na+,K+-ATPase activity by oxygen free radicals. Neuroreport 7:333–337

    Article  PubMed  CAS  Google Scholar 

  • Jinnah HA, Friedmann T (2001) Lesch Nyhan disease and it variants. In: Scriver, CR, Beaudet AL, Sly WS, Valle D (eds.) The Metabolic and Molecular Bases of Inherited Disease, eighth ed, McGraw-Hill, New York, pp. 2537–2569

    Google Scholar 

  • Jinnah HA, Gage FH, Friedmann T (1990) Animal models of Lesch-Nyhan syndrome. Brain Res Bull 25:467–475

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  PubMed  CAS  Google Scholar 

  • Kisch SJ, Fox IH, Kapur BM, Lloyd KG, Hornykiewicz O (1985) Brain benzodiazepine receptor binding and purine concentration in Lesch-Nyhan. Brain Res 336:117–123

    Article  Google Scholar 

  • Lees GJ (1993) Contributory mechanism in the causation of neurodegenerative disorders. Neurosci 54:287–322

    Article  CAS  Google Scholar 

  • Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2′–azo-bis (2-amidinopropane) thermolysis. Free Rad Res Comm 17:299–311

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Ma MHY, Stacey NC, Connolly GP (2001) Hypoxanthine impairs morphogenesis and enhances proliferation of a neuroblastoma model of Lesch Nyhan syndrome. J Neurosci Res 63:500–508

    Article  PubMed  CAS  Google Scholar 

  • Mahon S, Deniau JM, Charpier S (2004) Corticostriatal plasticity: Life after the depression. Trends Neurosci 27:460–467

    Article  PubMed  CAS  Google Scholar 

  • Morel P, Faucommeau B, Page G (1998). Inhibitory effect of ascorbic acid on dopamine uptake by rat striatal synaptosomes: Relationship to lipid peroxidation and oxidation of protein sulfhydryl groups. Neurosci Res 32:171–179

    Article  PubMed  CAS  Google Scholar 

  • Nyhan WL, Oliver WJ, Lesch M (1965) A familial disorder or uric acid metabolism and central nervous system function II. J Pediatr 67:439–444

    Google Scholar 

  • Palmer GC (1987) Free radicals generated by xanthine oxidase—hypoxanthine damage adenylate cyclase and ATPase in gerbil cerebral cortex. Metab Brain Dis 2:243–257

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, second ed. Academic Press, London

    Google Scholar 

  • Puig JG, Jimenez ML, Mateos FA, Fox IH (1989) Adenine nucleotide turnover in hypoxanthine-guanine phosphoribosyl-transferase: Evidence for an increased contribution of purine biosyntheses de novo. Metabolism 38: 410–418

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Renier WO, de Pont JJ, Vogels OJ, Gabreels FJ (1992) Neonatal status convulsivus, spongioform encephalopathy, and low activity of Na+,K+-ATPase in the brain. Epilepsia 33:58–64

    Article  PubMed  CAS  Google Scholar 

  • Rijksen G, Staal GEJ, Van Der Vlist MJM, Beerner FA, Troost J, Gutensohn W, Van Laarhoven JPRM, De Bruyn CHMM (1981) Partial hypoxanthine-guanine phosphoribosyl transferase deficiency with full expression of the Lesch—Nyhan syndrome. Hum Gen 57:39–47

    CAS  Google Scholar 

  • Schmidt H, Siems WG, Grune T, Grauel EL (1995) Concentration of purine compounds in the cerebrospinal fluid of infants suffering from sepsis, convulsions and hydrocephalus. J Perinat Med 23:167–174

    Article  PubMed  CAS  Google Scholar 

  • Visser JE, Bär PR, Jinnah HA (2000) Lesch-Nyhan disease and the basal ganglia. Brain Res Bull 32:449–475

    CAS  Google Scholar 

  • Visser JE, Smith DW, Moy SS, Breese GR, Friedmann T, Rothstein JD, Jinnah HA (2002) Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. Brain Res Dev Brain Res 133:127–139

    Article  PubMed  CAS  Google Scholar 

  • Wooten GF, Collins RC (1980) Regional glicose utilization following intrastriatal injection of kainic acid. Brain Res. 201:173–184

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Noriler ME, Borges LF, Floriano PJ, Silva CG, Wajner M, Wannmacher CMD (1999) Alanine prevents the decrease of Na+,K+-ATPase activity in experimental phenylketonuria. Metab Brain Dis 14:95–101

    Article  PubMed  CAS  Google Scholar 

  • Wyse ATS, Streck EL, Worm P, Wajner M, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25:969–973

    Article  Google Scholar 

  • Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A (1999) Intracellular reactive oxygen species mediate the linkage of Na+-K+–ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Cai T (2003). Na+,K+-ATPase—mediated signal transduction: From protein interaction to cellular function. Molecular Interventions 3:157–168

    Article  PubMed  CAS  Google Scholar 

  • Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    PubMed  CAS  Google Scholar 

  • Yang GY, Chen SF, Kinouchi H, Chan PH, Weinstein PR (1992) Edema, cation content, and ATPase activity after middle cerebral artery occlusion in rats. Stroke 23:1331–1336

    PubMed  CAS  Google Scholar 

  • Zaczek R, Simonton S, Coyle JT (1980) Local and distant neuronal degeneration following intrastriatal injection of kainic acid. J Neuropathol Exp Neurol 39:245–264

    Article  PubMed  CAS  Google Scholar 

  • Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from CNPq – Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Terezinha de Souza Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavaresco, C.S., Chiarani, F., Wannmacher, C.M.D. et al. Intrastriatal Hypoxanthine Reduces Na+,K+-ATPase Activity and Induces Oxidative Stress in the Rats. Metab Brain Dis 22, 1–11 (2007). https://doi.org/10.1007/s11011-006-9037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9037-y

Keywords

Navigation