Skip to main content
Log in

Suckling Rat Brain Regional Distribution of Acetylcholinesterase Activity in Galactosaemia In Vitro

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

We aimed to evaluate the effect of in vitro galactosaemia on acetylcholinesterase (AChE) activity in different suckling rat brain regions. Various concentrations of galactose (Gal), galactose-1-phosphate (Gal-1-P) and/or galactitol (Galtol) were preincubated for 1 h with homogenates from frontal cortex, hippocampus and for 1–3 h with hypothalamus homogenates at 37C. AChE activity was determined spectrophotometrically. Mixture A {Gal-1-P (2 mM), Galtol (2 mM), and Gal (4 mM) (=brain concentrations in classical galactosaemia)} or mixture B {Galtol (2 mM) and Gal (1 mM) (=brain concentrations in galactokinase deficiency galactosaemia)} inhibited by 18–20% (P < 0.01) AChE activity in frontal cortex or hippocampus homogenates. Gal-1-P (2–8 mM) reduced AChE activity by 20% (P < 0.01) on frontal cortex and hippocampus homogenates. Galtol (2–8 mM) resulted in an AChE inhibition {20–22% (P < 0.01)} in hippocampus, 2 mM of the substance had the same effect (20%, P < 0.01) on frontal cortex, whereas higher concentrations (4–8 mM) failed to decrease the enzyme activity anymore. Gal (1–8 mM) did not change AChE activity in the studied areas. Additionally, the hypothalamus enzyme activity was measured considerably high and remained unaltered in the presence of the above compounds. In conclusion, AChE activity was significantly higher in hypothalamus compared with those in frontal cortex and hippocampus. Frontal cortex and hippocampus AChE was significantly inhibited by Gal derivatives, whereas hypothalamus AChE activity remained unaltered possibly due to the histologically different innervation of this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, G.T., and Segal, S. (2000). Disorders of galactose metabolism. In (C.R. Scriver, A.L. Beadet, W.S. Sly, and D. Valle, eds.), The Metabolic and Molecular Basis of Inherited Disorders, McGraw-Hill, New York, pp. 1553–1589.

    Google Scholar 

  • Committee on Care and Use of Laboratory Animals (1985). Guide for the Care and Use of Laboratory Animal, Institute of Laboratory Animals Resources, National Research Council, Washington, DC, p. 83.

    Google Scholar 

  • Doulgeraki, A., Papadopoulou-Daifoti, Z., and Tsakiris, S. (2002). Effects of L-Phenylalanine on acetylcholinesterase and Na+/K+-ATPase activities in suckling rat frontal cortex, hippocampus, and hypothalamus. Z. Naturforsch. 57c:182–188.

    Google Scholar 

  • Ellman, G.L., Courtney, D., Andres, V., and Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Article  PubMed  Google Scholar 

  • Grisaru, D., Sternfeld, M., Eldor, A., Glick, D., and Hermona, S. (1999). Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 264:672–676.

    Article  PubMed  Google Scholar 

  • Guyton, A.C. (2000). Textbook of Medical Physiology, WB Saunders, Philadelphia, PA, pp. 1553–1589.

    Google Scholar 

  • Hansen, T.W.R., Henrichsen, B., Rasmussen, R.K., Carling, A., Andreassen, A.B., and Skjeldal, O. (1996). Neuropsychological and linguistic follow-up studies of children with galactosemia from an unscreened population. Acta Paediatr. 85:1197–1201.

    PubMed  Google Scholar 

  • Hommes, F.A. (1993). The effect of hyperphenilalaninemia on the muscarinic acetylcholine receptor in the HPH-5 mouse brain. J. Inherit. Metab. Dis. 6:32–35.

    Google Scholar 

  • Karikas, C.A., Schulpis, K.H., Tsakiris, S., Tjamouranis, J., and Georgala, S. (1999). In vitro effect of galactose-1-phosphate on acetylcholinesterase activity. Res. Commun. Biol. Psychol. 24:55–58.

    Google Scholar 

  • Kolb, B. (1984). Functions of the frontal cortex of the rat: A comparative review. Brain Res. Rev. 8:65–98.

    Article  Google Scholar 

  • Kouniniotou-Krontiri, P. (1985). Effects du lithium sur la liberation quantique spontanee de transmetteur par les terminaisons motrices du diaphragm de rat. J. Physiol. (Paris) 80:340–348.

    Google Scholar 

  • Kouniniotou-Krontiri, P., and Tsakiris, S. (1989). Time depedence of Li+ action on acetylcholinesterase activity in correlation with spontaneous quantal release of acetylcholine in rat diaphragm. Jpn. J. Physiol. 39:429–440.

    PubMed  Google Scholar 

  • Lotti, M. (1995). Cholinesterase inhibition complexes in the interpretation. Clin. Chem. 4:1814–1818.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  • Ostle, B. (1954). Statistics in Research, Iowa State University Press, Iowa, IA, pp. 110–126.

    Google Scholar 

  • Satoh, K., Staines, W.A., Atmadja, S., and Fibigen, H.C. (1983). Unstructural observation of the cholinergic neuron in rat striatum as identified by acetylcholinesterase pharmacochemistry. Neuroscience 10:1121–1136.

    Article  PubMed  Google Scholar 

  • Schulpis, K.H., Papaconstantinou, E.D., Michelakakis, H., and Shin, Y. (1997). Screening for galactosemia in Greece. Pediatr. Perinatal. Epidemiol. 11:436–440.

    Article  Google Scholar 

  • Segal, S. (1998). Galactosemia today: The enigma and the challenge. J. Inherit. Metab. Dis. 45:455–457.

    Article  Google Scholar 

  • Shim, I., Chung, J.Y., Lee, H.J., Yang, K.H., and Chang, J.H. (2003). Association of learning and memory impairments with changes in the septohippocampal cholinergic system in rats with kaolin-induced hydrocephalus. Neurosurgery 53:416–425.

    Article  PubMed  Google Scholar 

  • Shin-Buehring, V.S., Beier, T., Tan, A., Osang, M., and Schanb, J. (1977). The activity of galactose-1-phosphate uridyl transferase and galactokinase in human fetal organs. Pediatr. Res. 11:1003–1009.

    Google Scholar 

  • Sussman, J.-L., Hamel, M., Filow, F., and Goodman, A. (1991). Atomic structure of acetylcholinetserase. Science 253:872–880.

    PubMed  Google Scholar 

  • Thal, L.G., Gilbertson, E., and Armstrong, D.M. (1991). Development of the basal forebrain system, phenotype expression prior to target innervation. Neurobiol. Aging 13:61–72.

    Google Scholar 

  • Thomas, W. (1986). Studies of neurotransmitter chemistry of central nervous system neurons in primary tissue culture. Life Sci. 38:297–308.

    Article  PubMed  Google Scholar 

  • Tsakiris, S., Angelogianni, P., Schulpis, K.H., and Stavridis, J.C. (2000). Protective effect of L-Phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin. Biochem. 33:103–106.

    Article  PubMed  Google Scholar 

  • Tsakiris, S., Marinou, K., and Schulpis, K.H. (2002). The in vitro effects of galactose and its derivatives on rat brain Mg2+-ATPase activity. Pharmacol. Toxicol. 91:254–257.

    Article  PubMed  Google Scholar 

  • Tsakiris, S., and Schulpis, K.H. (2000). The effect of galactose metabolic disorders on the rat brain acetylcholinesterase activity. Z. Naturforsch. 55c:852–855.

    Google Scholar 

  • Tsakiris, S., Schulpis, K.H., Marinou, K., and Behrakis, P. (2004). Protective effect of L-cysteine and glutathione on the modulated suckling rat brain Na+,K+-ATPase and Mg2+-ATPase activities induced by the in vitro galactosemia. Pharmacol. Res. 49:475–479.

    Article  PubMed  Google Scholar 

  • Vincent, S., Satoh, K., and Fibiger, H. (1986). The localization of central cholinergic neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry 10:637–656.

    Article  PubMed  Google Scholar 

  • Waggoner, D.D., Buist, N.M.R., and Donnell, G.N. (1990). Long-term prognosis in galactosaemia: Results of a survey of 350 cases. J. Inherit. Metab. Dis. 13:802–818.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Tsakiris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinou, K., Tsakiris, S., Tsopanakis, C. et al. Suckling Rat Brain Regional Distribution of Acetylcholinesterase Activity in Galactosaemia In Vitro. Metab Brain Dis 20, 227–236 (2005). https://doi.org/10.1007/s11011-005-7210-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-7210-3

Keywords

Navigation