Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: MiRNA-27a mediates insulin resistance in 3T3-L1 cells through the PPARγ

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 28 June 2023

This article has been updated

Abstract

The biological actions of insulin have been originated by activation of membrane receptors, which trigger a diversity of signaling pathways in facilitating their biological activities. Insulin homeostasis functions in promoting metabolism balance and promotes cell growth and proliferation. If these mechanisms are reformed, this could lead to insulin resistance as a result of defective insulin signaling triggered by mutations in receptors or effector molecules located downstream or by abnormal posttranslational modifications. The purpose of this is to preliminarily investigate the mechanism of miRNA-27a-mediating insulin resistance in 3T3-L1 cells. Insulin resistance in 3T3-L1 adipocytes as a cell model was induced by tumor necrosis factor-alpha (TNF-α) and the miRNA-27a expression in 3T3-L1 adipocytes had been experiential. The regulation of peroxisome proliferator-activated receptor-gamma (PPARγ) mRNA by miRNA-27a had been studied by reverse transcription receptor polymerase chain reaction (RT-PCR). MiRNA-27a was up-regulated in 3T3-L1 cells, miRNA-27a mimics reserved expression of PPARγ mRNA, and miRNA-27a inhibitors up-regulated the expression of PPARγ mRNA. The insulin resistance in 3T3-L1 cells mediated by miRNA-27a may be achieved by targeting PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Change history

References

  1. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jenö P, Beglinger Ch, Peterli R, Hall MN (2018) Insulin resistance causes inflammation in adipose tissue. J Clin Invest 128(4):1538–1550. https://doi.org/10.1172/jci96139

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang Y, Li Y, Liu Q, Zhang J, Zhang Z, Wu T, Tang Q, Huang C, Li R, Zhou J, Zhang G, Zhao Y, Huang H, He J (2020) Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochem Biophys Res Commun 523(3):787–794. https://doi.org/10.1016/j.bbrc.2019.12.111

    Article  CAS  PubMed  Google Scholar 

  3. Nohara A, Okada S, Ohshima K, Pessin JE, Mori M (2011) Cyclin-dependent kinase-5 is a key molecule in tumor necrosis factor-α-induced insulin resistance. J Biol Chem 286(38):33457–33465. https://doi.org/10.1074/jbc.m111.231431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ying C, Sui-Xin L, Kang-Ling X, Wen-Liang Z, Lei D, Yuan L, Fan Z, Chen Z (2014) MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol Cell Biochem 14(1–2):117–125. https://doi.org/10.1007/s11010-014-1993-7

    Article  CAS  Google Scholar 

  5. Bao Y, Chen Z, Guo Y, Feng Y, Li Z, Han W, Wang J, Zhao W, Jiao Y, Li K, Wang Q, Wang J, Zhang H, Wang L, Yang W (2014) Tumor suppressor MicroRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS ONE 9(8):e105991. https://doi.org/10.1371/journal.pone.0105991

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nat 576:51–60. https://doi.org/10.1038/s41586-019-1797-8

    Article  CAS  Google Scholar 

  7. Chigurupati S, Dhanaraj SA, Balakumar P (2015) A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Eur J Pharm 755:50–57. https://doi.org/10.1016/j.ejphar.2015.02.043

    Article  CAS  Google Scholar 

  8. Zhang Y, Yin T, Wang X, Zhang R, Yuan J, Sun Y, Zong J, Cui S, Gu Y (2021) Relationships between islet-specific autoantibody titers and the clinical characteristics of patients with diabetes mellitus. Diabetes Metab J 45(3):404–416. https://doi.org/10.4093/dmj.2019.0239

    Article  PubMed  Google Scholar 

  9. Sardu C, Trotta MC, Pieretti G, Gatta G, Ferraro G, Nicoletti GF, D’ Onofrio N, Balestrieri ML, D’ Amico M, Abbatecola A, Ferraraccio F, Panarese I, Paolisso G, Marfella R (2021) MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetol 58(10):1381–1393. https://doi.org/10.1007/s00592-021-01743-5

    Article  CAS  PubMed  Google Scholar 

  10. Ge C, Zhao G, Li B, Li Y, Cawthorn WP, MacDougald OA, Franceschi RT (2018) Genetic inhibition of PPARγ S112 phosphorylation reduces bone formation and stimulates marrow adipogenesis. Bone 107:1–9. https://doi.org/10.1016/j.bone.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  11. Hung TM, Ho CM, Liu YC, Lee JL, Liao YR, Wu YM, Ho MC, Chen CH, Lai HS, Lee PH (2014) Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS ONE 9(2):e89446. https://doi.org/10.1371/journal.pone.0089446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryu HS, Park S-Y, Ma D, Zhang J, Lee W (2020) The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS ONE 6(3):e17343. https://doi.org/10.1371/journal.pone.0017343

    Article  CAS  Google Scholar 

  13. Sil R, Ray D, Chakraborti AS (2013) Glycyrrhizin ameliorates insulin resistance, hyperglycemia, dyslipidemia and oxidative stress in fructose-induced metabolic syndrome-X in rat model. Indian J Exp Biol 51(2):129–138

    CAS  PubMed  Google Scholar 

  14. Wan X, Huang W, Yang S, Zhang Y, Zhang P, Kong Z, Li T, Wu H, Jing F, Li Y (2016) Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int J Biochem Cell Biol 79:249–260. https://doi.org/10.1016/j.biocel.2016.08.043

    Article  CAS  PubMed  Google Scholar 

  15. Wu X-Z, Wang K-P, Song H-J, Xia J-H, Jiang Y, Wang Y-L (2015) MiR-27a-3p promotes esophageal cancer cell proliferation via F-box and WD repeat domain-containing 7 (FBXW7) suppression. Int J Clin Exp Med 8(9):15556–15562

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian Y, Fu S, Qiu GB, Xu ZM, Liu N, Zhang XW, Chen S, Wang Y, Sun KL, Fu WN (2014) MicroRNA-27a promotes proliferation and suppresses apoptosis by targeting PLK2 in laryngeal carcinoma. BMC Cancer 14(1):1–12

    Article  CAS  Google Scholar 

  17. Collares RVA, Salgado W, Da Cunha Tirapelli DP, Dos Santos JS (2014) The expression of LEP, LEPR, IGF1 and IL10 in obesity and the relationship with microRNAs. PLoS ONE 9(4):e93512. https://doi.org/10.1371/journal.pone.0093512

    Article  CAS  Google Scholar 

  18. Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC, Foss MC, Puthier D, Sakamoto-Hojo ET, Passos GA, Donadi EA (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 6(1):1–15. https://doi.org/10.1186/1756-0500-6-491

    Article  CAS  Google Scholar 

  19. Wang TT, Chen YJ, Sun LL, Zhang SJ, Zhou ZY, Qiao H (2015) Affection of single-nucleotide polymorphisms in miR-27a, miR-124a, and miR-146a on susceptibility to type 2 diabetes mellitus in Chinese Han people. Chin Med J 128(4):533–539. https://doi.org/10.4103/0366-6999.151112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Zhang Y, Li X, Shi L, Tao W, Shi L, Yang M, Wang X, Yang Y, Yao Y (2015) Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int J Med Sci 12(11):875–880. https://doi.org/10.7150/ijms.12954

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nunez Lopez YO, Garufi G, Seyhan AA (2017) Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. Mol Biosyst 13(1):106–121. https://doi.org/10.1039/c6mb00596a

    Article  CAS  Google Scholar 

  22. Zhou T, Meng X, Che H, Shen N, Xiao D, Song X, Liang M, Fu X, Ju J, Li Y, Xu C, Zhang Y, Wang L (2016) Regulation of insulin resistance by multiple miRNAs via targeting the GLUT4 signalling pathway. Cell Physiol Biochem 38(5):2063–2078. https://doi.org/10.1159/000445565

    Article  CAS  PubMed  Google Scholar 

  23. Choi SS, Park J, Choi JH (2014) Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep 47(11):599–608. https://doi.org/10.5483/bmbrep.2014.47.11.174

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seidinova A, Ishigov I, Peyami C, Seidinov S (2018) Effectiveness of pump insulin therapy in the treatment of type 2 diabetes mellitus (review). Georgian Med News 284:51–55

    Google Scholar 

  25. Glukhov AA, Sergeev VA, Semyonova GA (2018) Assessment of the outcomes of the treatment of patients with suppurative necrotic complications of diabetic foot syndrome with the use of programmed rehabilitation technologies. Grek Bull Surg 177(6):63–68

    Article  Google Scholar 

Download references

Acknowledgements

This research received no acknowledgments.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

YZ assisted in writing, interpretation, reviewing of the article, and editing of the manuscript. ML assisted in concept, design, data collection, data analysis, and writing of the original draft.

Corresponding author

Correspondence to Yangming Zhuang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

The study was carried out at the Beijing Tongrentang Hospital of Traditional Chinese Medicine (Beijing, People’s Republic of China) and was approved by the Local Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s11010-023-04799-9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Li, M. RETRACTED ARTICLE: MiRNA-27a mediates insulin resistance in 3T3-L1 cells through the PPARγ. Mol Cell Biochem 477, 1107–1112 (2022). https://doi.org/10.1007/s11010-022-04367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04367-7

Keywords

Navigation