Skip to main content

Advertisement

Log in

MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type 2 innate lymphoid cells (ILC2s) exert an increasingly important influence on the pathological process of allergic rhinitis (AR), which is affected by microRNAs-mediated post-transcriptional regulation. This study aims to investigate the function of miR-150-5p in AR patients and the mouse model of AR. The mouse model of AR was established using the OVA challenge. The expressions of miR-150-5p, ICAM-1, p-p38 and p-GATA-3 were evaluated via RT-qPCR and western blot analysis. The level of ILC2s was examined with flow cytometry. Concentrations of OVA-specific IgE, IL-13 and IL-5 in serum were evaluated using ELISA. Histopathological examination was conducted through H&E staining. The interplay between ICAM-1 and miR-150-5p was determined through the DLR assay. The decreased miR-150-5p expression and increased ICAM-1, p-p38 and p-GATA-3 expressions and ILC2s levels were detected in AR patients and AR mice compared with controls. Treatment with miR-150-5p lentivirus alleviated AR symptoms (sneezing, rubbing, mucosa inflammation, serum type 2 cytokines and OVA-specific IgE) and lowered the ILC2s level in AR mice. MiR-150-5p was found to directly bind to 3′-UTR of ICAM-1 and downregulate ICAM-1 expression, thereby descending the level of p-p38, p-GATA-3 and suppressing ILC2s function to alleviate AR symptoms. Treatment with Lenti-ICAM-1 counteracted these protective effects of miR-150-5p. Upregulation of miR-150-5p repressed the ICAM-1/p38 axis which was vital to ILC2s development and function, thereby alleviating allergic symptoms of AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All datasets for the analysis in the present study are available upon reasonable request to the corresponding author.

Abbreviations

AR:

Allergic rhinitis

ICAM-1:

Intercellular cell adhesion molecule-1

LFA-1:

Leukocyte function-associated molecule

miRNAs:

MicroRNAs

NALT:

Nasal-associated lymphoid tissue

NC:

Negative control

OVA:

Ovalbumin

PBMCs:

Peripheral blood mononuclear cells

SPF:

Specific pathogen-free

Th2:

T-helper type 2

ILC2s:

Type 2 innate lymphoid cells

References

  1. Incorvaia C, Cavaliere C, Frati F, Masieri S (2018) Allergic rhinitis. J Biol Regul Homeost Agents 32(1 Suppl. 1):61–66

    CAS  PubMed  Google Scholar 

  2. Khan DA (2014) Allergic rhinitis and asthma: epidemiology and common pathophysiology. Allergy Asthma Proc 35(5):357–361. https://doi.org/10.2500/aap.2014.35.3794

    Article  PubMed  Google Scholar 

  3. Bernstein DI, Schwartz G, Bernstein JA (2016) Allergic rhinitis: mechanisms and treatment. Immunol Allergy Clin N Am 36(2):261–278. https://doi.org/10.1016/j.iac.2015.12.004

    Article  Google Scholar 

  4. Scanlon ST, McKenzie AN (2012) Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol 24(6):707–712. https://doi.org/10.1016/j.coi.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  5. Klose CS, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17(7):765–774. https://doi.org/10.1038/ni.3489

    Article  CAS  PubMed  Google Scholar 

  6. Christianson CA, Goplen NP, Zafar I, Irvin C, Good JT Jr, Rollins DR, Gorentla B, Liu W, Gorska MM, Chu H, Martin RJ, Alam R (2015) Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol 136(1):59-68.e14. https://doi.org/10.1016/j.jaci.2014.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, O’Byrne PM, Gauvreau GM, Boulet LP, Lemiere C, Martin J, Nair P, Sehmi R (2016) Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol 137(1):75-86.e78. https://doi.org/10.1016/j.jaci.2015.05.037

    Article  CAS  PubMed  Google Scholar 

  8. Fan D, Wang X, Wang M, Wang Y, Zhang L, Li Y, Fan E, Cao F, Van Crombruggen K, Zhang L (2016) Allergen-dependent differences in ILC2s frequencies in patients with allergic rhinitis. Allergy Asthma Immunol Res 8(3):216–222. https://doi.org/10.4168/aair.2016.8.3.216

    Article  CAS  PubMed  Google Scholar 

  9. Sun R, Yang Y, Huo Q, Gu Z, Wei P, Tang X (2020) Increased expression of type 2 innate lymphoid cells in pediatric patients with allergic rhinitis. Exp Ther Med 19(1):735–740. https://doi.org/10.3892/etm.2019.8235

    Article  CAS  PubMed  Google Scholar 

  10. Eifan AO, Durham SR (2016) Pathogenesis of rhinitis. Clin Exp Allergy 46(9):1139–1151. https://doi.org/10.1111/cea.12780

    Article  CAS  PubMed  Google Scholar 

  11. Xiao L, Jiang L, Hu Q, Li Y (2018) MiR-302e attenuates allergic inflammation in vitro model by targeting RelA. Biosci Rep. https://doi.org/10.1042/BSR20180025

  12. Zhu Y, Liu Y, Zhu X, Wang Z, Wang M (2020) Upregulation of miR-155 regulates group 2 innate lymphoid cells by targeting c-maf in allergic rhinitis. Eur J Pharmacol 887:173564. https://doi.org/10.1016/j.ejphar.2020.173564

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Yu J, Wang F, Guo R, Xing H, Chen Y, Chen D, Xie X, Wan D, Jiang Z (2021) MiR-150-5p regulate T cell activation in severe aplastic anemia by targeting Bach2. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03373-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Z, Wang H, Xia Y, Yan F, Lu Y (2018) Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol 201(8):2472–2482. https://doi.org/10.4049/jimmunol.1800304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, Nagarkatti M, Nagarkatti P (2019) AhR activation leads to massive mobilization of myeloid-derived suppressor cells with immunosuppressive activity through regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p that target anti-inflammatory genes. J Immunol 203(7):1830–1844. https://doi.org/10.4049/jimmunol.1900291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei S, Liu Q (2019) Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-kappaB axis. Int J Clin Exp Pathol 12(9):3311–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh PB, Pua HH, Happ HC, Schneider C, von Moltke J, Locksley RM, Baumjohann D, Ansel KM (2017) MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med 214(12):3627–3643. https://doi.org/10.1084/jem.20170545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogg N, Patzak I, Willenbrock F (2011) The insider’s guide to leukocyte integrin signalling and function. Nat Rev Immunol 11(6):416–426. https://doi.org/10.1038/nri2986

    Article  CAS  PubMed  Google Scholar 

  19. Lei AH, Xiao Q, Liu GY, Shi K, Yang Q, Li X, Liu YF, Wang HK, Cai WP, Guan YJ, Gabrilovich DI, Zhou J (2018) ICAM-1 controls development and function of ILC2. J Exp Med 215(8):2157–2174. https://doi.org/10.1084/jem.20172359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubbard AK, Rothlein R (2000) Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 28(9):1379–1386. https://doi.org/10.1016/s0891-5849(00)00223-9

    Article  CAS  PubMed  Google Scholar 

  21. Dragoni S, Hudson N, Kenny BA, Burgoyne T, McKenzie JA, Gill Y, Blaber R, Futter CE, Adamson P, Greenwood J, Turowski P (2017) Endothelial MAPKs direct ICAM-1 signaling to divergent inflammatory functions. J Immunol 198(10):4074–4085. https://doi.org/10.4049/jimmunol.1600823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648. https://doi.org/10.1016/j.immuni.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong C, Zhu J (2017) Transcriptional regulators dictate innate lymphoid cell fates. Protein Cell 8(4):242–254. https://doi.org/10.1007/s13238-017-0369-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maneechotesuwan K, Xin Y, Ito K, Jazrawi E, Lee KY, Usmani OS, Barnes PJ, Adcock IM (2007) Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol 178(4):2491–2498. https://doi.org/10.4049/jimmunol.178.4.2491

    Article  CAS  PubMed  Google Scholar 

  25. Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF (2020) Long non-coding RNA MALAT1 exacerbates acute respiratory distress syndrome by upregulating ICAM-1 expression via microRNA-150-5p downregulation. Aging (Albany NY) 12(8):6570–6585. https://doi.org/10.18632/aging.102953

    Article  CAS  Google Scholar 

  26. Hoyte FCL, Nelson HS (2018) Recent advances in allergic rhinitis. F1000Res. https://doi.org/10.12688/f1000research.15367.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gurram RK, Zhu J (2019) Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cell Mol Immunol 16(3):225–235. https://doi.org/10.1038/s41423-019-0210-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W, Harvey RJ (2015) Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy 45(2):394–403. https://doi.org/10.1111/cea.12462

    Article  CAS  PubMed  Google Scholar 

  29. Bartemes KR, Kephart GM, Fox SJ, Kita H (2014) Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol 134(3):671-678.e674. https://doi.org/10.1016/j.jaci.2014.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doherty TA, Scott D, Walford HH, Khorram N, Lund S, Baum R, Chang J, Rosenthal P, Beppu A, Miller M, Broide DH (2014) Allergen challenge in allergic rhinitis rapidly induces increased peripheral blood type 2 innate lymphoid cells that express CD84. J Allergy Clin Immunol 133(4):1203–1205. https://doi.org/10.1016/j.jaci.2013.12.1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhariwal J, Cameron A, Trujillo-Torralbo MB, Del Rosario A, Bakhsoliani E, Paulsen M, Jackson DJ, Edwards MR, Rana BMJ, Cousins DJ, Hansel TT, Johnston SL, Walton RP, Consortium M-GSA (2017) Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergens. Am J Respir Crit Care Med 195(12):1586–1596. https://doi.org/10.1164/rccm.201609-1846OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato Y, Akasaki S, Muto-Haenuki Y, Fujieda S, Matsushita K, Yoshimoto T (2014) Nasal sensitization with ragweed pollen induces local-allergic-rhinitis-like symptoms in mice. PLoS ONE 9(8):e103540. https://doi.org/10.1371/journal.pone.0103540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deshpande DA, Dileepan M, Walseth TF, Subramanian S, Kannan MS (2015) MicroRNA regulation of airway inflammation and airway smooth muscle function: relevance to asthma. Drug Dev Res 76(6):286–295. https://doi.org/10.1002/ddr.21267

    Article  CAS  PubMed  Google Scholar 

  34. Pua HH, Ansel KM (2015) MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol 36:101–108. https://doi.org/10.1016/j.coi.2015.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu YQ, Liao B, Liu YH, Wang Z, Zhu XH, Chen XB, Wang MQ (2019) MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Eur Rev Med Pharmacol Sci 23(10):4097–4109. https://doi.org/10.26355/eurrev_201905_17911

    Article  PubMed  Google Scholar 

  36. Wang J, Cui Z, Liu L, Zhang S, Zhang Y, Zhang Y, Su H, Zhao Y (2019) MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-kappaB pathway. Immunotherapy 11(13):1095–1105. https://doi.org/10.2217/imt-2019-0047

    Article  CAS  PubMed  Google Scholar 

  37. Dustin ML, Bivona TG, Philips MR (2004) Membranes as messengers in T cell adhesion signaling. Nat Immunol 5(4):363–372. https://doi.org/10.1038/ni1057

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK (2014) Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology 19(4):508–513. https://doi.org/10.1111/resp.12285

    Article  PubMed  Google Scholar 

  39. Furusho S, Myou S, Fujimura M, Kita T, Yasui M, Kasahara K, Nakao S, Takehara K, Sato S (2006) Role of intercellular adhesion molecule-1 in a murine model of toluene diisocyanate-induced asthma. Clin Exp Allergy 36(10):1294–1302. https://doi.org/10.1111/j.1365-2222.2006.02568.x

    Article  CAS  PubMed  Google Scholar 

  40. Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R (2010) Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium. J Immunol 185(8):4846–4855. https://doi.org/10.4049/jimmunol.0903732

    Article  CAS  PubMed  Google Scholar 

  41. Zhu J (2017) GATA3 regulates the development and functions of innate lymphoid cell subsets at multiple stages. Front Immunol 8:1571. https://doi.org/10.3389/fimmu.2017.01571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T, Belkaid Y, Zhao K, Zhu J (2014) The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40(3):378–388. https://doi.org/10.1016/j.immuni.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Furusawa J, Moro K, Motomura Y, Okamoto K, Zhu J, Takayanagi H, Kubo M, Koyasu S (2013) Critical role of p38 and GATA3 in natural helper cell function. J Immunol 191(4):1818–1826. https://doi.org/10.4049/jimmunol.1300379

    Article  CAS  PubMed  Google Scholar 

  44. Chen CH, Zhang DH, LaPorte JM, Ray A (2000) Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J Immunol 165(10):5597–5605. https://doi.org/10.4049/jimmunol.165.10.5597

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 8197150744).

Author information

Authors and Affiliations

Authors

Contributions

All authors gave final approval of the version to be published and agreed to be accountable for all aspects of this work.

Corresponding author

Correspondence to Renzhong Wang.

Ethics declarations

Conflict of interest

The authors declared no commercial or financial conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of The Affiliated Hospital of Shandong University of Traditional Chinese Medicine and obeyed the principles of the Declaration of Helsinki. The study protocol was approved by the Institutional Animal Ethics Committee of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. The methodologies of this research were carried out following the National Institutes of Health guide for the care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Meng, W., Chen, X. et al. MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis. Mol Cell Biochem 477, 1009–1022 (2022). https://doi.org/10.1007/s11010-021-04346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04346-4

Keywords

Navigation