Skip to main content
Log in

Role of Wnt signaling pathways in type 2 diabetes mellitus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) has become a major global public health issue in the twenty-first century and its incidence has increased each year. Wnt signaling pathways are a set of multi-downstream signaling pathways activated by the binding of Wnt ligands to membrane protein receptors. Wnt signaling pathways regulate protein expression and play important roles in protecting the body's normal physiological metabolism. This review describes Wnt signaling pathways, and then aims to reveal how Wnt signaling pathways participate in the occurrence and development of T2DM. We found that Wnt/c-Jun N-terminal kinase signaling was closely associated with insulin resistance, inflammatory response, and pancreatic β-cell and endothelial dysfunction. β-catenin/transcription factor 7-like 2 (TCF7L2)-mediated and calcineurin/nuclear factor of activated T cells-mediated target genes were involved in insulin synthesis and secretion, insulin degradation, pancreatic β-cell growth and regeneration, and functional application of pancreatic β-cells. In addition, polymorphisms in the TCF7L2 gene could increase risk of T2DM according to previous and the most current results, and the T allele of its variants was a more adverse factor for abnormal pancreatic β-cell function and impaired glucose tolerance in patients with T2DM. These findings indicate a strong correlation between Wnt signaling pathways and T2DM, particularly in terms of pancreatic islet dysfunction and insulin resistance, and new therapeutic targets for T2DM may be identified.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlqvist E, Ahluwalia TS, Groop L (2011) Genetics of type 2 diabetes. Clin Chem 57(2):241–254

    Article  CAS  PubMed  Google Scholar 

  2. Barroso I (2005) Genetics of type 2 diabetes. Diabet Med 22(5):517–535

    Article  CAS  PubMed  Google Scholar 

  3. Kota SK, Meher LK, Jammula S, Modi KD (2012) Genetics of type 2 diabetes mellitus and other specific types of diabetes, its role in treatment modalities. Diabetes Metab Syndr: Clin Res Rev 6(1):54–58

    Article  Google Scholar 

  4. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885

    Article  CAS  PubMed  Google Scholar 

  5. Brunetti A, Chiefari E, Foti D (2014) Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes 5(2):128–140

    Article  PubMed  PubMed Central  Google Scholar 

  6. Groop L, Pociot F (2014) Genetics of diabetes-are we missing the genes or the disease? Mol Cell Endocrinol 382(1):726–739

    Article  CAS  PubMed  Google Scholar 

  7. Ramkumar S, Ammini A (2013) Early initiation of insulin in a child with T2DM and clinical course—a case report. Int J Pediatr Endocrinol 2013(Suppl 1):P26

    Article  PubMed Central  Google Scholar 

  8. Barruet R, Gbadoe AD (2006) Type 2 diabetes mellitus in children in black Africa: description of first five cases in Togo. Med Trop: Rev du Corps de Sante Col 66(5):481–483

    CAS  Google Scholar 

  9. Singh S, Usman K, Banerjee M (2016) Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 7(15):302–315

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  11. Teeling M (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl):S62–S69

    Google Scholar 

  12. Larsen M (2009) Beta-cell function and mass in type 2 diabetes. Dan Med Bull 56(3):153–164

    PubMed  Google Scholar 

  13. Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG et al (2015) ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 48(7–8):476–482

    Article  CAS  PubMed  Google Scholar 

  14. De Filippis E, Cusi K, Ocampo G, Berria R, Buck S, Consoli A et al (2006) Exercise-induced improvement in vasodilatory function accompanies increased insulin sensitivity in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab 91(12):4903–4910

    Article  PubMed  Google Scholar 

  15. Park Y, Booth FW, Lee S, Laye MJ, Zhang C (2012) Physical activity opposes coronary vascular dysfunction induced during high fat feeding in mice. J Physiol 590(17):4255–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Investig 116(7):180–212

    Article  Google Scholar 

  17. Jin T (2016) Current knowledge on the role of Wnt signaling pathway in glucose homeostasis. In: Mauricio D (ed) Molecular nutrition and diabetes. Elsevier, Amsterdam, pp 357–369

    Chapter  Google Scholar 

  18. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  19. Sharma RP, Chopra VL (1976) Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 48(2):461–465

    Article  CAS  PubMed  Google Scholar 

  20. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  CAS  PubMed  Google Scholar 

  21. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50(4):649–657

    Article  CAS  PubMed  Google Scholar 

  22. Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A et al (1991) A new nomenclature for int-1 and related genes: the Wnt gene family. Cell 64(2):231

    Article  CAS  PubMed  Google Scholar 

  23. Loregger A, Gerhard M (2009) Characterization of a novel Modulator of the Wnt signaling pathway. Zeitschrift Fur Gastroenterol-z Gastroenterol 47:G12

    Google Scholar 

  24. Senapedis WT, Donovan S, Golan G, McCauley D, Ellis J, Crochiere M et al (2015) Abstract 5404: PAK4 allosteric modulators (PAMs) repress the wnt/β-catenin signaling pathway and tumor growth. Can Res 75(Suppl 15):5404

    Article  Google Scholar 

  25. He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-relatedproteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131(8):1663–1677

    Article  CAS  PubMed  Google Scholar 

  26. Bryan TM, Keiko T, Xi H (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):26

    Google Scholar 

  27. Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8(2):126–138

    Article  CAS  PubMed  Google Scholar 

  28. Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathway. Oncogene 18(55):7860–7872

    Article  CAS  PubMed  Google Scholar 

  29. Kawano Y (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116(13):2627–2634

    Article  CAS  PubMed  Google Scholar 

  30. Van Amerongen R, Mikels A, Nusse R (2008) Alternative wnt signaling is initiated by distinct receptors. Sci Signal 1(35):re9

    PubMed  Google Scholar 

  31. Schinner S, Ülgen F, Papewails C, Schott M, Woelk A, Vidal-Puig A et al (2007) Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51(1):147–154

    Article  PubMed  Google Scholar 

  32. Bikkavilli RK, Feigin ME, Malbon CC (2008) Gαo mediates WNT-JNK signaling through Dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells. J Cell Sci 121(2):234–245

    Article  CAS  PubMed  Google Scholar 

  33. Krützfeldt J, Stoffel M (2010) Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic ialets from wild-type and obese mice. Diabetologia 53(1):123–127

    Article  PubMed  Google Scholar 

  34. Bowen A, Kos K, Whatmore J, Richardson S, Welters HJ (2016) Wnt4 antagonises Wnt3a mediated increases in growth and glucose stimulated insulin secretion in the pancreatic beta-cell line, INS-1. Biochem Biophys Res Commun 479(4):793–799

    Article  CAS  PubMed  Google Scholar 

  35. Tian F, Zhang YJ, Li Y, Xie Y (2014) Celecoxib ameliorates non-alcoholic steatohepatitis in type 2 diabetic rats via suppression of the non-canonical Wnt signaling pathway expression. PLoS ONE 9(1):e83819

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bilkovski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, Gutschow C et al (2011) Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans. Int J Obes 35(11):1450–1454

    Article  CAS  Google Scholar 

  37. Schäfer SA, Machicao F, Fritsche A, Häring H-U, Kantartzis K (2011) New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 93:S9–S24

    Article  PubMed  Google Scholar 

  38. Musso G, Gambino R, Pacini G, Pagano G, Durazzo M, Cassader M (2010) Transcription factor 7-like 2 polymorphism modulates glucose and lipid homeostasis, adipokine profile, and hepatocyte apoptosis in NASH. Hepatology 49(2):426–435

    Article  Google Scholar 

  39. He N, Zhang Z (2015) Baicalein suppresses the viability of MG-63 osteosarcoma cells through inhibiting c-MYC expression via Wnt signaling pathway. Mol Cell Biochem 405(1–2):187–196

    Article  CAS  PubMed  Google Scholar 

  40. He TC, Chan TA, Vogelstein B, Kinzler KW (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99(3):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP et al (2011) Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia 54(12):3132–3142

    Article  CAS  PubMed  Google Scholar 

  42. Xia JJ, Zheng XY, Liu C, Hu YM, Ren W (2015) Regulation effect of TCF7L2 gene silence on the expression of insulin degrading enzyme in insulin resistant HepG2 cells. Med J Chin People’s Lib Army 40(2):110–116

    CAS  Google Scholar 

  43. Xavier GDS, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58(4):894–905

    Article  CAS  Google Scholar 

  44. Wang X, Lei XG, Wang J (2014) Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Mol Cell Endocrinol 382(1):8–16

    Article  CAS  PubMed  Google Scholar 

  45. Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K (2008) Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 57(3):645–653

    Article  CAS  PubMed  Google Scholar 

  46. Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283(13):8723–8735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Figeac F, Uzan B, Faro M, Chelali N, Portha B, Movassat J (2010) Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats. Am J Physiol-Endocrinol Metab 298(2):E245–E256

    Article  CAS  PubMed  Google Scholar 

  48. Shu L, Matveyenko AV, Kerrconte J, Cho J-H, Mcintosh CHS, Maedler K (2015) Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 24(10):3004–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee S-H, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P (2008) Islet specific Wnt activation in human type II diabetes. Exp Diabetes Res 2008:1–13

    Article  Google Scholar 

  50. Potapov VA, Chistiakov DA, Shamkhalova MS, Shestakova MV, Nosikov VV (2009) TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Diabetes Metab Syndr 3(4):219–223

    Article  Google Scholar 

  51. Shen J, Fang Y, Ge W (2015) Polymorphism in the transcription factor 7-like 2(TCF7L2) gene is associated with Impaired proinsulin conversion-A meta-analysis. Diabetes Res Clin Pract 109(1):117–123

    Article  CAS  PubMed  Google Scholar 

  52. Lu J, Varghese RT, Zhou L, Vella A, Jensen MD (2017) Glucose tolerance and free fatty acid metabolism in adults with variations in TCF7L2 rs7903146. Metabolism 68:55–63

    Article  CAS  PubMed  Google Scholar 

  53. Dhawan D, Padh H (2016) Genetic variations in TCF7L2 influence therapeutic response to sulfonylureas in Indian diabetics. Diabetes Res Clin Pract 121:35–40

    Article  CAS  PubMed  Google Scholar 

  54. Solinas G, Karin M (2010) JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J 24(8):2596–2611

    Article  CAS  PubMed  Google Scholar 

  55. Pal M, Febbraio MA, Lancaster GI (2016) The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J Physiol 594(2):267–279

    Article  CAS  PubMed  Google Scholar 

  56. Solinas G, Becattini B (2017) JUK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 6(2):174–184

    Article  CAS  PubMed  Google Scholar 

  57. Bennett BL, Satoh Y, Lewis AJ (2003) JNK: a new therapeutic target for diabetes. Curr Opin Pharmacol 3(4):420–425

    Article  CAS  PubMed  Google Scholar 

  58. Kaneto H (2005) The JNK pathway as a therapeutic target for diabetes. Expert Opin Ther Targets 9(3):581–592

    Article  CAS  PubMed  Google Scholar 

  59. Li H, Yu X (2013) Emerging role of JUK in insulin resistance. Curr Diabetes Rev 9(5):422–428

    Article  CAS  PubMed  Google Scholar 

  60. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336

    Article  CAS  PubMed  Google Scholar 

  61. Prause M, Mayer CM, Brorsson C, Frederiksen KS, Billestrup N, Størling J et al (2016) JNK1 deficient insulin-producing cells are protected against interleukin-1β-induced apoptosis associated with abrogated Myc expression. J Diabetes Res 2016:1–15

    Article  Google Scholar 

  62. Ferdaoussi M, Abdelli S, Yang J-Y, Cornu M, Niederhauser G, Favre D et al (2008) Exendin-4 protects beta-cells from interleukin-1 beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 57(5):1205–1215

    Article  CAS  PubMed  Google Scholar 

  63. Cang X, Wang X, Liu P, Wu X, Yan J, Chen J et al (2016) PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by supressing ROS mediated MAPK pathways. Biochem Biophys Res Commun 478(1):431–438

    Article  CAS  PubMed  Google Scholar 

  64. Ning C, Wang X, Gao S, Mu J, Liu S, Zhu J et al (2017) Chicory inulin ameliorates type 2 diabetes mellitus and supresses JNK and MAPK pathways in vivo and vitro. Mol Nutr Food Res 61(8):1600673

    Article  Google Scholar 

  65. Zhu Z, Yin S, Wu K, Lee A, Liu Y, Li H et al (2018) Downregulation of Sfrp5 in insulin resistant rats promotes macrophage-mediated pulmonary inflammation through activation of Wnt5a/JNK1 signaling. Biochem Biophys Res Commun 505:498

    Article  CAS  PubMed  Google Scholar 

  66. Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA et al (2016) Endothelial dysfunction in human diabetes is mediated by Wnt5a–JNK signaling significance. Arterioscler Thromb Vasc Biol 36(3):561–569

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farb MG, Karki S, Park S-Y, Saggese SM, Carmine B, Hess DT et al (2016) WNT5A-JNK regulation of vascular insulin resistance in human obesity. Vasc Med 21(6):489–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Supp1):S67–S79

    Article  CAS  PubMed  Google Scholar 

  69. Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP (2006) Dense-core secretory granule biogenesis. Physiology 21(2):124–133

    Article  CAS  PubMed  Google Scholar 

  70. Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21(10):599–609

    Article  CAS  PubMed  Google Scholar 

  71. Heisel O, Heisel R, Balshaw R, Keown P (2015) New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and Meta-analysis. Am J Transplant 4(4):583–595

    Article  Google Scholar 

  72. Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR, Kim SK (2012) Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell 23(1):21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY et al (2005) Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25(9):3752–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP et al (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22(1):44–52

    Article  CAS  PubMed  Google Scholar 

  75. Zhang H, Ackermann AM, Gusarova GA, Lowe D, Feng X, Kopsombut UG et al (2006) The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Mol Endocrinol 20(8):1853–1866

    Article  CAS  PubMed  Google Scholar 

  76. Bernal-Mizrachi E, Cras-Méneur C, Ye BR, Johnson JD, Permutt MA (2010) Transgenic overexpression of active calcineurin in β-cells results in decreased β-Cell mass and hyperglycemia. PLoS ONE 5(8):e11969

    Article  PubMed  PubMed Central  Google Scholar 

  77. Heit JJ (2007) Calcineurin/NFAT signaling in the β-cell: From diabetes to new therapeutics. BioEssays 29(10):1011–1021

    Article  CAS  PubMed  Google Scholar 

  78. Gentile A, Lhamyani S, Coín-Aragüez L, Clemente-Postigo M, Oliva-Olivera W, Romero-Zerbo SY et al (2018) miR-20b, miR-296, and Let-7f expression in human adipose tissue is related to obesity and type 2 diabetes. Obesity 27:245

    Article  PubMed  Google Scholar 

  79. Wang XY, Zhang XZ, Li F, Ji QR (2018) MiR-128-3p accelerates cardiovascular calcification and insulin resistance through ISL1-dependent Wnt pathway in type 2 diabetes mellitus rats. J Cell Physiol 234:4997

    Article  PubMed  Google Scholar 

  80. Jin T, Liu L (2008) Minireview: the Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 22(11):2383–2392

    Article  CAS  PubMed  Google Scholar 

  81. Liu Z, Habener JF (2010) Wnt signaling in pancreatic islets. In: Islam M (ed) The islets of langerhans. Springer, Dordrecht, pp 391–419

    Chapter  Google Scholar 

  82. Ip W, Chiang Y, Jin T (2012) The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: the current understanding, dispute, and perspective. Cell Biosci 2(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bordonaro M (2009) Chapter 19 role of Wnt signaling in the development of type 2 diabetes. Vitam Horm 80:563–581

    Article  CAS  PubMed  Google Scholar 

  84. Schultze SM, Hemmings BA, Niessen M, Tschopp O (2012) PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 14:e1

    Article  PubMed  Google Scholar 

  85. Nemazee D, Gavin A, Hoebe K, Beutler B (2006) Immunology: toll-like receptors and antibody responses. Nature 441(7091):E4–E4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka T, Matsuhisa M et al (2005) Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 37(8):1595–1608

    Article  CAS  PubMed  Google Scholar 

  87. Abdelli S, Abderrahmani A, Hering BJ, Beckmann JS, Bonny C (2007) The c-Jun N-terminal kinase JNK participates in cytokine- and isolation stress-induced rat pancreatic islet apoptosis. Diabetologia 50(8):1660–1669

    Article  CAS  PubMed  Google Scholar 

  88. Almario R, Karakas S (2014) Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation. Horm Metab Res 47(02):152–157

    Article  PubMed  Google Scholar 

  89. Hansen PA, Waheed A, Corbett JA (2007) Chemically chaperoning the actions of insulin. Trends Endocrinol Metab 18(1):1–3

    Article  CAS  PubMed  Google Scholar 

  90. Lebrun P, Obberghen EV (2007) SOCS proteins causing trouble in insulin action. Acta Physiol 192:29–36

    Article  Google Scholar 

  91. Gonen MS, Arikoglu H, Erkoc Kaya D, Ozdemir H, Ipekci SH, Arslan A et al (2012) Effects of single nucleotide polymorphisms in KATP channel genes on type 2 diabetes in a Turkish population. Arch Med Res 43(4):317–323

    Article  CAS  PubMed  Google Scholar 

  92. Zhuang L, Zhao Y, Zhao W, Li M, Yu M, Lu M et al (2015) The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem 404(1–2):133–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Planned Project of Department of Science & Technology of Liaoning province in 2020 [2020JH2/10200039], and we are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

This literature review was written by XM and JC. Relevant guidance and advice was provided by CN, JM, DL and YM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianjun Meng.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ning, C., Mu, J. et al. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem 476, 2219–2232 (2021). https://doi.org/10.1007/s11010-021-04086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04086-5

Keywords

Navigation