Skip to main content
Log in

MicroRNA-20a-5p suppresses tumor angiogenesis of non-small cell lung cancer through RRM2-mediated PI3K/Akt signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The current therapeutic strategies for non-small cell lung cancer (NSCLC) are limited and unsatisfactory. MicroRNAs (miRNAs) participate in tumor angiogenesis in NSCLC. The aim of this study was to investigate the role of miR-20a-5p (miR-20a) in human NSCLC metastasis. In the current study, bioinformatics analysis and RT-PCR were performed to examine the expression level of miR-20a in tissues of NSCLC patients and NSCLC cell lines, respectively. Western blot was performed to test the protein levels. Cell proliferation, migration and angiogenesis capacity were tested by 5-ethynyl-29-deoxyuridine (EdU) assay, transwell assay and tube formation assay, respectively. Dual-luciferase reporter assay (DLR) was used to confirm the interaction between miR-20a and paired ribonucleotide reductase regulatory subunit M2 (RRM2). We found that the expression of RRM2 was upregulated, while the expression of miR-20a was downregulated in cancer tissues compared with adjacent tissues in NSCLC patients. We also detected the expression level of RRM2 and miR-20a in NSCLC cell lines, showing A549 cell line exhibited the lowest expression level of miR-20a and highest expression level of RRM2. Overexpressed miR-20a not only dramatically suppressed NSCLC cells proliferation, endothelial cells migration and tube formation in vitro, but also inhibited tumor growth and angiogenesis in vivo. It was demonstrated that miR-20a suppressed NSCLC growth by inhibiting RRM2-mediated PI3K/Akt signaling pathway. These findings indicate that the novel identified miR-20a could function as a tumor suppressor in NSCLC through modulating the RRM2-mediated PI3K/Akt axis, and it could be a valid molecular target for NSCLC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

NSCLC:

Non-small cell lung cancer

miR-20a:

MiR-20a-5p

RRM2:

Ribonucleotide reductase regulatory subunit M2

LC:

Lung cancer

3′-UTRs:

3′ Untranslated regions

GEO:

Gene expression omnibus

DEGs:

Differentially expressed genes

BEAS-2B:

Human normal bronchial epithelial cell

HUVEC:

Human umbilical vein endothelial cells

DLR:

Dual-luciferase reporter assay

FBS:

Fetal bovine serum

RT:

Room temperature

References

  1. Yang D, Liu Y, Bai C, Wang X, Powell CA (2020) Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Lett 468:82–87. https://doi.org/10.1016/j.canlet.2019.10.009

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Zimmermann S, Parikh K, Mansfield AS, Adjei AA (2019) Current diagnosis and management of small-cell lung cancer. Mayo Clin Proc 94:1599–1622. https://doi.org/10.1016/j.mayocp.2019.01.034

    Article  PubMed  Google Scholar 

  3. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564. https://doi.org/10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  4. Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125. https://doi.org/10.1016/j.pbi.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  5. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  6. Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer–a brief overview. Adv Biol Regul 57:1–9. https://doi.org/10.1016/j.jbior.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  7. Pandima Devi K, Rajavel T, Daglia M, Nabavi SF, Bishayee A, Nabavi SM (2017) Targeting miRNAs by polyphenols: novel therapeutic strategy for cancer. Semin Cancer Biol 46:146–157. https://doi.org/10.1016/j.semcancer.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Gong ZH, Zhou F, Shi C, Xiang T, Zhou CK, Wang QQ, Jiang YS, Gao SF (2019) miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cell Mol Biol Lett 24:9. https://doi.org/10.1186/s11658-018-0131-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu L, Xu X, Huang H, Ma Z, Zhang S, Niu P, Chen Y, Ping J, Lu P, Yu C, Min L, Chen J, Dai L, Dong S (2018) MiR-1260b promotes the migration and invasion in non-small cell lung cancer via targeting PTPRK. Pathol Res Pract 214:776–783. https://doi.org/10.1016/j.prp.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Zhan S, Wang C, Yin F (2018) MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA. Mol Med Rep 17:6705–6710. https://doi.org/10.3892/mmr.2018.8678

    Article  CAS  PubMed  Google Scholar 

  11. Czarnecka KH, Szmyd B, Baranska M, Kaszkowiak M, Kordiak J, Antczak A, Pastuszak-Lewandoska D, Brzezianska-Lasota E (2019) A Strong decrease in TIMP3 expression mediated by the presence of miR-17 and 20a enables extracellular matrix remodeling in the NSCLC lesion surroundings. Front Oncol 9:1372. https://doi.org/10.3389/fonc.2019.01372

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu X, Zhu S, Tao Z, Ye S (2018) High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med 7:21–31. https://doi.org/10.1002/cam4.1238

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Mao F, Shen T, Luo Q, Ding Z, Qian L, Huang J (2017) Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol Lett 13:669–676. https://doi.org/10.3892/ol.2016.5462

    Article  CAS  PubMed  Google Scholar 

  14. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  Google Scholar 

  15. Urman A, Dean Hosgood H (2015) Lung cancer risk, genetic variation, and air pollution. EBioMedicine 2:491–492. https://doi.org/10.1016/j.ebiom.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schanne DH, Heitmann J, Guckenberger M, Andratschke NHJ (2019) Evolution of treatment strategies for oligometastatic NSCLC patients—a systematic review of the literature. Cancer Treat Rev 80:101892. https://doi.org/10.1016/j.ctrv.2019.101892

    Article  PubMed  Google Scholar 

  17. Wood SL, Pernemalm M, Crosbie PA, Whetton AD (2014) The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 40:558–566. https://doi.org/10.1016/j.ctrv.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38:173. https://doi.org/10.1186/s13046-019-1156-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, Tong TR, Pangeni R, Salgia R, Raz DJ (2019) Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 17:167. https://doi.org/10.1186/s12964-019-0480-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang F, Shao C, Wei K, Jing X, Qin Z, Shi Y, Shu Y, Shen H (2019) miR-942 promotes tumor migration, invasion, and angiogenesis by regulating EMT via BARX2 in non-small-cell lung cancer. J Cell Physiol 234:23596–23607. https://doi.org/10.1002/jcp.28928

    Article  CAS  PubMed  Google Scholar 

  21. Wang N, Zhan T, Ke T, Huang X, Ke D, Wang Q, Li H (2014) Increased expression of RRM2 by human papillomavirus E7 oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer 110:1034–1044. https://doi.org/10.1038/bjc.2013.817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang K, Hu S, Wu J, Chen L, Lu J, Wang X, Liu X, Zhou B, Yen Y (2009) Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Mol Cancer 8:11. https://doi.org/10.1186/1476-4598-8-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen WX, Yang LG, Xu LY, Cheng L, Qian Q, Sun L, Zhu YL (2019) Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. Biosci Rep. https://doi.org/10.1042/BSR20182062

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhijun Z, Jingkang H (2017) MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway. Biochem Biophys Res Commun 486:49–56. https://doi.org/10.1016/j.bbrc.2017.02.121

    Article  CAS  PubMed  Google Scholar 

  25. Li YJ, Ping C, Tang J, Zhang W (2016) MicroRNA-455 suppresses non-small cell lung cancer through targeting ZEB1. Cell Biol Int 40:621–628. https://doi.org/10.1002/cbin.10584

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, Zhang Y, Li Z, Lv B, Li H, Liu J (2017) MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol 39:1010428317706215. https://doi.org/10.1177/1010428317706215

    Article  CAS  PubMed  Google Scholar 

  27. Yang W, Bai J, Liu D, Wang S, Zhao N, Che R, Zhang H (2018) MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene 647:13–20. https://doi.org/10.1016/j.gene.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  28. Jiang W, He Y, Shi Y, Guo Z, Yang S, Wei K, Pan C, Xia Y, Chen Y (2019) MicroRNA-1204 promotes cell proliferation by regulating PITX1 in non-small-cell lung cancer. Cell Biol Int 43:253–264. https://doi.org/10.1002/cbin.11083

    Article  CAS  PubMed  Google Scholar 

  29. Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V, Ayala de la Pena F (2018) Angiogenic role of miR-20a in breast cancer. PLoS One 13:e0194638. https://doi.org/10.1371/journal.pone.0194638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X (2019) miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 58:1234–1247. https://doi.org/10.1002/mc.23006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was funded by Henan Medical Science and Technology Project Plan (Joint construction, No. 2018020549).

Author information

Authors and Affiliations

Authors

Contributions

JLH participated in the design of the study, conducted the experiments, and drafted the manuscript. JPH designed the study, revised the manuscript and was responsible for authenticity of data. FS, HB, BT and XF collected and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianping Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Ethics committee of Henan Chest Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Hu, J., Sun, F. et al. MicroRNA-20a-5p suppresses tumor angiogenesis of non-small cell lung cancer through RRM2-mediated PI3K/Akt signaling pathway. Mol Cell Biochem 476, 689–698 (2021). https://doi.org/10.1007/s11010-020-03936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03936-y

Keywords

Navigation