Skip to main content
Log in

Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria have various cellular functions, including ATP synthesis, calcium homeostasis, cell senescence, and death. Mitochondrial dysfunction has been identified in a variety of disorders correlated with human health. Among the many underlying mechanisms of mitochondrial dysfunction, the opening up of the mitochondrial permeability transition pore (mPTP) is one that has drawn increasing interest in recent years. It plays an important role in apoptosis and necrosis; however, the molecular structure and function of the mPTP have still not been fully elucidated. In recent years, the abnormal opening up of the mPTP has been implicated in the development and pathogenesis of diverse diseases including ischemia/reperfusion injury (IRI), neurodegenerative disorders, tumors, and chronic obstructive pulmonary disease (COPD). This review provides a systematic introduction to the possible molecular makeup of the mPTP and summarizes the mitochondrial dysfunction-correlated diseases and highlights possible underlying mechanisms. Since the mPTP is an important target in mitochondrial dysfunction, this review also summarizes potential treatments, which may be used to inhibit pore opening up via the molecules composing mPTP complexes, thus suppressing the progression of mitochondrial dysfunction-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

mPTP:

Mitochondrial permeability transition pore

IRI:

Ischemia/reperfusion injury

COPD:

Chronic obstructive pulmonary disease

OMM:

Outer mitochondrial membrane

IMM:

Inner mitochondrial membrane

MPT:

Mitochondrial permeability transition

MMP:

Mitochondrial membrane potential

Cyt c :

Cytochrome c

VDAC:

Voltage-dependent anion channel

ANT:

Adenine nucleotide translocator

Cyp-D:

Cyclophilin D

PiC:

Phosphate carrier

TSPO:

Translocator protein

CsA:

Cyclosporine A

SPG7:

Spastic paraplegia 7

Bcl-2:

Apoptosis protein B cell leukemia/lymphoma-2

BI-1:

Bax inhibitor-1

ER:

Endoplasmic reticulum

CDZ:

4′-Chlorodiazepam

CNS:

Central nervous system

AD:

Alzheimer's disease

PD:

Parkinson's disease

HD:

Huntington's disease

ALS:

Amyotrophic lateral sclerosis

CSC:

Cancer stem cells

CS:

Cigarette smoking

BKA:

Bongkrekic acid

CoQ0 :

2, 3-Dimethoxy-5-methyl-1, 4-benzoquinone, zero isoprenoid side-chains

PAO:

Phenylarsine oxide

IBMX:

1-Methyl-3-isobutylxanthine

MIRI:

Mitochondrial ischemia/reperfusion injury

ETC:

Electron transport chain

Cas-3:

Caspase-3

References

  1. Frey TG, Mannella CA (2000) The internal structure of mitochondria. TIBS 25:319–324. https://doi.org/10.1016/S0968-0004(00)01609-1

    Article  CAS  PubMed  Google Scholar 

  2. Crompton M, Costi A, Hayat Y (1987) Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245:915–918. https://doi.org/10.1042/bj2450915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zorov DB, Kinnally KW, Perini S et al (1992) Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. BBA 1105:263–270. https://doi.org/10.1016/0005-2736(92)90203-X

    Article  CAS  PubMed  Google Scholar 

  4. Petronilli V, Szabi I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143. https://doi.org/10.1016/0014-5793(89)81513-3

    Article  CAS  PubMed  Google Scholar 

  5. Massari S, Azzone GF (1972) The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. BBA 283:23–29. https://doi.org/10.1016/0005-2728(72)90094-1

    Article  CAS  PubMed  Google Scholar 

  6. Morciano G, Bonora M, Campo G et al (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Mitochondrial Dyn Cardiovasc Med 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9

    Article  CAS  Google Scholar 

  7. Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426:1–7. https://doi.org/10.1016/j.ydbio.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  8. Xue QG, Ling Z, Bei LL et al (2018) CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J Physiol Biochem 74:395–402. https://doi.org/10.1007/s13105-018-0627-z

    Article  CAS  Google Scholar 

  9. Kottke M, Adam V, Riesinger I et al (1988) Mitochondrial boundary membrane contact sites in brain: Points of hexokinase and creatine kinase location of control of Ca2+ transport. BBA 935:87–102. https://doi.org/10.1016/0005-2728(88)90111-9

    Article  CAS  PubMed  Google Scholar 

  10. Mcenery MW, Snowman AM, Trifiletti RR et al (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89:3170–3174. https://doi.org/10.1073/pnas.89.8.3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kinnally KW, Zorov DB, Antonenko YN et al (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci USA 90:1374–1378. https://doi.org/10.1073/pnas.90.4.1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Min-Jong K, Shadel GS (2016) A mitochondrial perspective of chronic obstructive pulmonary disease pathogenesis. Tubercul Respir Dis 79:207. https://doi.org/10.4046/trd.2016.79.4.207

    Article  Google Scholar 

  13. Karch J, Kwong JQ, Burr AR et al (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. https://doi.org/10.7554/eLife.00772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831. https://doi.org/10.1016/j.yjmcc.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  15. Azarashvili T, Krestinina O, Baburina Y et al (2015) Combined effect of G3139 and TSPO ligands on Ca2+-induced permeability transition in rat brain mitochondria. Arch Biochem Biophys 587:70–77. https://doi.org/10.1016/j.abb.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. https://doi.org/10.1038/20959

    Article  CAS  PubMed  Google Scholar 

  17. Houštëk J, Pedersen PL (1985) Adenine nucleotide and phosphate transport systems of mitochondria-relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide. J Biol Chem 260:6288–6295. https://doi.org/10.1016/0165-022X(85)90070-3

    Article  PubMed  Google Scholar 

  18. Fiore C, Trézéguet V, Saux AL et al (1998) The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80:137–150. https://doi.org/10.1016/s0300-9084(98)80020-5

    Article  CAS  PubMed  Google Scholar 

  19. Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria I. The protective mechanisms. Arch Biochem Biophys 195:453–459. https://doi.org/10.1016/0003-9861(79)90371-0

    Article  CAS  PubMed  Google Scholar 

  20. Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525. https://doi.org/10.2174/0929867033457278

    Article  CAS  PubMed  Google Scholar 

  21. Buchanan BB, Eiermann W, Riccio P et al (1976) Antibody evidence for different conformational states of ADP, ATP translocator protein isolated from mitochondria. Pro Natl Acad Sci USA 73:2280–2284. https://doi.org/10.2307/65754

    Article  CAS  Google Scholar 

  22. Haworth RA, Hunter DR (2000) Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr 32:91–96. https://doi.org/10.1023/A:1005568630151

    Article  CAS  PubMed  Google Scholar 

  23. Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. https://doi.org/10.1038/nature02229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160. https://doi.org/10.1042/bj2680153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. https://doi.org/10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  26. Li HH, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7. https://doi.org/10.1016/s0014-5793(01)03314-2

    Article  Google Scholar 

  27. Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120. https://doi.org/10.1007/BF01869662

    Article  CAS  PubMed  Google Scholar 

  28. Colombini M (2012) Mitochondrial outer membrane channels. Chem Rev 112:6373–6387. https://doi.org/10.1021/cr3002033

    Article  CAS  PubMed  Google Scholar 

  29. Mertins B, Psakis G, Lars-Oliver E (2014) Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol Chem 395:1435–1442. https://doi.org/10.1515/hsz-2014-0203

    Article  CAS  PubMed  Google Scholar 

  30. Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645. https://doi.org/10.1038/279643a0

    Article  CAS  PubMed  Google Scholar 

  31. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. BBA 1241:139–176. https://doi.org/10.1002/biof.5520080315

    Article  PubMed  Google Scholar 

  32. Szabó I, Pinto VD, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules-II. the electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330:206–210. https://doi.org/10.1016/0014-5793(93)80274-x

    Article  PubMed  Google Scholar 

  33. Szabó I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules-I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205. https://doi.org/10.1016/0014-5793(93)80273-W

    Article  PubMed  Google Scholar 

  34. Camara A-KS, Yi FZ, Po-Chao W et al (2017) Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target. Front Physiol 8:460. https://doi.org/10.3389/fphys.2017.00460

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shanmughapriya S, Rajan S, Hoffman NE et al (2015) SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 60:47–62. https://doi.org/10.1016/j.molcel.2015.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sampson MJ, Decker WK, Beaudet AL et al (2001) Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 276:39206–39212. https://doi.org/10.1074/jbc.M104724200

    Article  CAS  PubMed  Google Scholar 

  37. Paumard P, Vaillier J, Coulary B et al (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. https://doi.org/10.1093/emboj/21.3.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alavian KN, Beutner G, Lazrove E et al (2014) An uncoupling channel within the c-subunit ring of the F1F0 ATP synthase is the mitochondrial permeability transition pore. PNAS 111:10580–10585. https://doi.org/10.1073/pnas.1401591111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonora M, Bononi A, Marchi ED et al (2013) Role of the c subunit of the F0 ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683. https://doi.org/10.4161/cc.23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiu YH, Carroll J, Shu JD et al (2017) Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. PNAS 114:9086–9091. https://doi.org/10.1073/pnas.1711201114

    Article  CAS  Google Scholar 

  41. Neginskaya MA, Solesio ME, Berezhnaya EV et al (2019) ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep 26:11–17.e12. https://doi.org/10.1016/j.celrep.2018.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bernardi P (2020) Mechanisms for Ca2+-dependent permeability transition in mitochondria. PNAS 117:2743–2744. https://doi.org/10.1073/pnas.1921035117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walker JE, Carroll J, He J (2020) Reply to Bernardi: the mitochondrial permeability transition pore and the ATP synthase. PNAS 117:2745–2746. https://doi.org/10.1073/pnas.1921409117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernardi P, Rasola A, Forte M et al (2015) The mitochrondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155. https://doi.org/10.1152/physrev.00001.2015.-The

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carrolla J, Hea J, Dinga S et al (2019) Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. PNAS 116:12816–12821. https://doi.org/10.1073/pnas.1904005116

    Article  CAS  Google Scholar 

  46. Seifert EL, Ligeti E, Mayr JA et al (2015) The mitochondrial phosphate carrier: role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem Bioph Res Commun 464:369–375. https://doi.org/10.1016/j.bbrc.2015.06.031

    Article  CAS  Google Scholar 

  47. Leung A-WC, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323. https://doi.org/10.1074/jbc.M805235200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12:120–125. https://doi.org/10.1016/j.mito.2011.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwong F-NG, Nicholson AG, Harrison CL et al (2017) Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Eur Respir Rev 26:170040. https://doi.org/10.1183/16000617.0040-2017

    Article  Google Scholar 

  50. Gutiérrez-Aguilar M, Douglas DL, Gibson AK et al (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325. https://doi.org/10.1016/j.yjmcc.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papadopoulos V, Baraldi M, Guilarte TR et al (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409. https://doi.org/10.1016/j.tips.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  52. Casellas P, Galiegue S, Basile AS (2002) Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40:475–486. https://doi.org/10.1016/S0197-0186(01)00118-8

    Article  CAS  PubMed  Google Scholar 

  53. Zeno S, Zaaroor M, Leschiner S et al (2009) CoCl2 induces apoptosis via the 18 kDa translocator protein in U118MG human glioblastoma cells. Biochemistry 48:4652–4661. https://doi.org/10.1021/bi900064t

    Article  CAS  PubMed  Google Scholar 

  54. Morin D, Musman J, Pons S et al (2016) Mitochondrial translocator protein (TSPO): from physiology to cardioprotection. Biochem Pharmacol 105:1–13. https://doi.org/10.1016/j.bcp.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  55. Azarashvili T, Grachev D, Krestinina O et al (2007) The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium 42:27–39. https://doi.org/10.1016/j.ceca.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  56. Šileikytė J, Blachly-Dyson E, Sewell R et al (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). J Biol Chem 289:13769–13781. https://doi.org/10.1074/jbc.M114.549634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marzo I, Brenner C, Zamzami N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187:1261–1271. https://doi.org/10.1084/jem.187.8.1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brenner C, Cadiou H, Vieira H-LA et al (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19:329–336. https://doi.org/10.1038/sj.onc.1203298

    Article  CAS  PubMed  Google Scholar 

  59. Dejean LM, Martinez-Caballero S, Liang G et al (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432. https://doi.org/10.1091/mbc.e04-12-1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geum-Hwa L, Hwa-Young L, Bo L et al (2014) Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep-UK 4:5194. https://doi.org/10.1038/srep05194

    Article  CAS  Google Scholar 

  61. Carlson EA, Rao VK, Yan S-SD (2013) From a cell's viewpoint: targeting mitochondria in Alzheimer's disease. Drug Discov Today Ther Strateg 10:e91–e98. https://doi.org/10.1016/j.ddstr.2014.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  62. Heng D, Lan G, Wen SZ et al (2011) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32:398–406. https://doi.org/10.1016/j.neurobiolaging.2009.03.003

    Article  CAS  Google Scholar 

  63. Batarseh A, Papadopoulos V (2010) Regulation of translocator protein 18kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 327:1–12. https://doi.org/10.1016/j.mce.2010.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piper HM, García-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300. https://doi.org/10.1016/s0008-6363(98)00033-9

    Article  CAS  PubMed  Google Scholar 

  65. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60:617–625. https://doi.org/10.1016/j.cardiores.2003.09.025

    Article  CAS  PubMed  Google Scholar 

  66. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642. https://doi.org/10.1146/annurev.physiol.60.1.619

    Article  CAS  PubMed  Google Scholar 

  67. Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354. https://doi.org/10.1016/0022-2828(91)90181-k

    Article  CAS  PubMed  Google Scholar 

  68. Davies LP, Huston V (1981) Peripheral benzodiazepine ninding sites in heart and their interaction with dipyridamole. Eur J Pharmacol 73:209–211. https://doi.org/10.1016/0014-2999(81)90092-3

    Article  CAS  PubMed  Google Scholar 

  69. Papadopoulos V, Miller WL (2012) Role of mitochondria in steroidogenesis. Best Pract Res Cl En 26:771–790. https://doi.org/10.1016/j.beem.2012.05.002

    Article  CAS  Google Scholar 

  70. Surinkaew S, Chattipakorn S, Chattipakorn N (2011) Roles of mitochondrial benzodiazepine receptor in the heart. Can J Cardiol 27:262.e263–262.e213. https://doi.org/10.1016/j.cjca.2010.12.023

    Article  CAS  Google Scholar 

  71. Motloch LJ, Jun H, Akar FG (2015) The mitochondrial translocator protein and arrhythmogenesis in ischemic heart disease. Oxid Med Cell Longev 2015:234104. https://doi.org/10.1155/2015/234104

    Article  PubMed  PubMed Central  Google Scholar 

  72. Obame FN, Zini R, Souktani R et al (2007) Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization. J Pharmacol Exp Ther 323:336–345. https://doi.org/10.1124/jpet.107.124255

    Article  CAS  PubMed  Google Scholar 

  73. Musman J, Paradis S, Panel M, et al (2017) A TSPO ligand prevents mitochondrial sterol accumulation and dysfunction during myocardial ischemia-reperfusion in hypercholesterolemic rats. Biochem Pharmacol 142:87–95. doi: https://doi.org/10.1016/j.bcp.2017.06.125

  74. Paradis S, Leoni V, Caccia C et al (2013) Cardioprotection by the TSPO ligand 4′-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98:420–427. https://doi.org/10.1093/cvr/cvt079

    Article  CAS  PubMed  Google Scholar 

  75. Tsamatsoulis M, Kapelios CJ, Katsaros L et al (2016) Cardioprotective effects of intracoronary administration of 4-chlorodiazepam in small and large animal models of ischemia-reperfusion. Int J Cardiol 224:90–95. https://doi.org/10.1016/j.ijcard.2016.09.011

    Article  PubMed  Google Scholar 

  76. Chunyan G, Li S, Xue PC et al (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  CAS  Google Scholar 

  77. Lan G, Heng D, Shi QY et al (2013) Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS ONE 8:e54914. https://doi.org/10.1371/journal.pone.0054914

    Article  CAS  Google Scholar 

  78. Heng D, Yan S-SD (2010) Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell B 42:560–572. https://doi.org/10.1016/j.biocel.2010.01.004

    Article  CAS  Google Scholar 

  79. Repalli J (2014) Translocator protein (TSPO) role in aging and Alzheimer's disease. Curr Aging Sci 7:168–175. https://doi.org/10.2174/1874609808666141210103146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barichello T, Simões LR, Collodel A et al (2017) The translocator protein (18 kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav R 83:183–199. https://doi.org/10.1016/j.neubiorev.2017.10.010

    Article  CAS  Google Scholar 

  81. Christensen A, Pike CJ (2018) TSPO ligand PK11195 improves Alzheimer-related outcomes in aged female 3xTg-AD mice. Neurosci Lett 683:7–12. https://doi.org/10.1016/j.neulet.2018.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anne-Claire D, Largeau B, Ribeiro M-JS et al (2017) Translocator protein-18 kDa (TSPO) positron emission tomography (PET) Imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci 18:785. https://doi.org/10.3390/ijms18040785

    Article  CAS  Google Scholar 

  83. Li W, Ke XC, Zi HN et al (2019) Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening. BioFactors 45:85–96. https://doi.org/10.1002/biof.1462

    Article  CAS  PubMed  Google Scholar 

  84. Rong Z, Guo BL, Qian Z et al (2018) Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells. Cell Death Dis 9:598. https://doi.org/10.1038/s41419-018-0641-7

    Article  CAS  Google Scholar 

  85. NavaneethaKrishnan S, Rosales JL, Ki-Young L (2018) Loss of Cdk5 in breast cancer cells promotes ROS-mediated cell death through dysregulation of the mitochondrial permeability transition pore. Oncogene 37:1788–1804. https://doi.org/10.1038/s41388-017-0103-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Basit F, Oppen L-MPE, Schöckel L et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8:e2716–e2716. https://doi.org/10.1038/cddis.2017.133

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rottenberg H, Hoek JB (2017) The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16:943–955. https://doi.org/10.1111/acel.12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arumugam P, Samson A, Ki J et al (2017) Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol 33:307–321. https://doi.org/10.1007/s10565-016-9378-1

    Article  CAS  PubMed  Google Scholar 

  89. Galiègue S, Casellas P, Kramar A et al (2004) Immunohistochemical assessment of the peripheral benzodiazepine receptor in breast cancer and its relationship with survival. Clin Cancer Res 10:2058–2064. https://doi.org/10.1158/1078-0432.CCR-03-0988

    Article  PubMed  Google Scholar 

  90. Unterrainer M, Fleischmann DF, Vettermann F et al (2019) TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative 18F-GE-180 PET study. Eur J Nucl Med Mol I 44:2230–2238. https://doi.org/10.1007/s00259-019-04491-5

    Article  CAS  Google Scholar 

  91. Montagner D, Fresch B, Browne K et al (2016) A Cu(II) complex targeting the translocator protein: in vitro and in vivo antitumor potential and mechanistic insights. Chem Commun 53:134–137. https://doi.org/10.1039/c6cc08100b

    Article  CAS  Google Scholar 

  92. Ryter SW, Rosas IO, Owen CA et al (2018) Mitochondrial dysfunction as a pathogenic mediator of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 15:S266–S272. https://doi.org/10.1513/AnnalsATS.201808-585MG

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jing M, Ya L, Su YL et al (2019) Bufei Jianpi granules reduce quadriceps muscular cell apoptosis by improving mitochondrial function in rats with chronic obstructive pulmonary disease. Evid-Based Compl ALT 2019:1–9. https://doi.org/10.1155/2019/1216305

    Article  Google Scholar 

  94. Bhoola NH, Mbita Z, Hull R et al (2018) Translocator protein (TSPO) as a potential biomarker in human cancers. Int J Mol Sci 19:2176. https://doi.org/10.3390/ijms19082176

    Article  CAS  PubMed Central  Google Scholar 

  95. Nagler R, Ben-Izhak O, Savulescu D et al (2010) Oral cancer, cigarette smoke and mitochondrial 18kDa translocator protein (TSPO) - In vitro, in vivo, salivary analysis. BBA-Mol Basis Dis 1802:454–461. https://doi.org/10.1016/j.bbadis.2010.01.008

    Article  CAS  Google Scholar 

  96. Caramori G, Ruggeri P, Mumby S et al (2019) Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Tar 23:539–553. https://doi.org/10.1080/14728222.2019.1615884

    Article  CAS  Google Scholar 

  97. Das SK, Mukherjee S (1999) Role of peripheral benzodiazepine receptors on secretion of surfactant in guinea pig alveolar type II cells. Biosci Rep 19:461–471. https://doi.org/10.1023/A:1020272508250

    Article  CAS  PubMed  Google Scholar 

  98. Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256(257):107–115. https://doi.org/10.1023/b:mcbi.0000009862.17396.8d

    Article  PubMed  Google Scholar 

  99. Szabadkai G, Bianchi K, Várnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911. https://doi.org/10.1083/jcb.200608073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gatliff J, East DA, Singh A et al (2017) A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis 8:e2896–e2896. https://doi.org/10.1038/cddis.2017.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Puente-Maestu L, Pérez-Parra J, Godoy R et al (2009) Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 40:746–750. https://doi.org/10.1165/rcmb.2008-0289OC

    Article  CAS  PubMed  Google Scholar 

  102. Homan EP, French ME, Morris PJ (1980) Effect of cyclosporin A upon the function of ischemically damaged renal autografts in the dog. Transplantation 30:228–230. https://doi.org/10.1097/00007890-198009000-00014

    Article  CAS  PubMed  Google Scholar 

  103. Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang-xiong Z, Cheng Y, Dao-zhou L et al (2019) Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnol 17:18. https://doi.org/10.1186/s12951-019-0451-9

    Article  Google Scholar 

  105. Ynarong C, Yan KL, Hua LX et al (2017) Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats. Afr J Tradit Complem 14:348–355. https://doi.org/10.21010/ajtcam.v14i2.36

    Article  CAS  Google Scholar 

  106. Shuang L, Nan W, Jia XM et al (2018) Protective effect of morin on myocardial ischemia-reperfusion injury in rats. Int J Mol Med 42:1379–1390. https://doi.org/10.3892/ijmm.2018.3743

    Article  CAS  Google Scholar 

  107. Henderson P-JF, Lardy HA (1970) Bongkrekic acid-an inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 245:1319–1326

    Article  CAS  PubMed  Google Scholar 

  108. Shug AL, Koke JR, Bittar N et al (1977) Atractyloside-induced myocardial cell injury. J Mol Cell Cardiol 9:489–497. https://doi.org/10.1016/S0022-2828(77)80028-X

    Article  CAS  PubMed  Google Scholar 

  109. Hurst S, Hoek J, Shey-Shing S (2017) Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 49:27–47. https://doi.org/10.1007/s10863-016-9672-x

    Article  CAS  PubMed  Google Scholar 

  110. Huang H, Song QL, Yong L et al (2019) Nutritional preconditioning of apigenin alleviates myocardial ischemia/reperfusion injury via the mitochondrial pathway mediated by Notch1/Hes1. Oxid Med Cell Longev 2019:1–15. https://doi.org/10.1155/2019/7973098

    Article  CAS  Google Scholar 

  111. Meng YT, Yong YX, Yan M et al (2019) Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3β pathway. Eur J Pharmacol 843:80–87. https://doi.org/10.1016/j.ejphar.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  112. You-Cheng H, Thiyagarajan V, Ting-Tsz O et al (2017) CoQ0-induced mitochondrial PTP opening triggers apoptosis via ROS-mediated VDAC1 upregulation in HL-60 leukemia cells and suppresses tumor growth in athymic nude mice/xenografted nude mice. Arch Toxicol 92:301–322. https://doi.org/10.1007/s00204-017-2050-6

    Article  CAS  Google Scholar 

  113. Papadopoulos V, Lecanu L (2009) Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. Exp Neurol 219:53–57. https://doi.org/10.1016/j.expneurol.2009.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lejri I, Grimm A, Hallé F et al (2019) TSPO ligands boost mitochondrial function and pregnenolone synthesis. J Alzheimers Dis. https://doi.org/10.3233/jad-190127

    Article  PubMed  PubMed Central  Google Scholar 

  115. Martin LJ, Fancelli D, Wong M et al (2014) GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 8:433. https://doi.org/10.3389/fncel.2014.00433

    Article  PubMed  PubMed Central  Google Scholar 

  116. Richardson AP, Halestrap AP (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 473:1129–1140. https://doi.org/10.1042/bcj20160070

    Article  CAS  PubMed  Google Scholar 

  117. Chun-Wei L, Fan Y, Shi-Zhao C et al (2017) Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: the role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore. Cardiovasc Ther 35:3–9. https://doi.org/10.1111/1755-5922.12225

    Article  CAS  Google Scholar 

  118. Yu XX, Yong GH, Zhi LC et al (2016) Tauroursodeoxycholic acid inhibits endoplasmic reticulum stress, blocks mitochondrial permeability transition pore opening, and suppresses reperfusion injury through GSK-3β in cardiac H9c2 cells. Am J Transl Res 8:4586–4597

    Google Scholar 

  119. Yang YW, Yong Y, Xin CW et al (2017) Tilianin post-conditioning attenuates myocardial ischemia/reperfusion injury via mitochondrial protection and inhibition of apoptosis. Med Sci Monitor 23:4490–4499. https://doi.org/10.12659/msm.903259

    Article  CAS  Google Scholar 

  120. Chanoit G, Juan Z, Lee S et al (2011) Inhibition of phosphodiesterases leads to prevention of the mitochondrial permeability transition pore opening and reperfusion injury in cardiac H9c2 cells. Cardiovasc Drug Ther 25:299–306. https://doi.org/10.1007/s10557-011-6310-z

    Article  CAS  Google Scholar 

  121. Yan-Jie G, Su-Yan D, Xin-Xin C et al (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60:2161–2175. https://doi.org/10.1002/mnfr.201600111

    Article  CAS  Google Scholar 

  122. Baev YA, Elustondo P, Negoda A et al (2018) Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques. Anal Biochem 552:38–44. https://doi.org/10.1016/j.ab.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  123. Hen GS, Meng MW, Ting X (2019) Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 234:23774–23784. https://doi.org/10.1002/jcp.28945

    Article  CAS  Google Scholar 

  124. Yan L, De JZ, Meng HL et al (2016) Shengmai Formula suppressed over-activated Ras/MAPK pathway in C. elegans by opening mitochondrial permeability transition pore via regulating cyclophilin D. Sci Rep-UK 6:38934. https://doi.org/10.1038/srep38934

    Article  CAS  Google Scholar 

  125. Arrázola MS, Ramos-Fernández E, Cisternas P et al (2017) Wnt signaling prevents the Aβ oligomer-induced mitochondrial permeability transition pore opening preserving mitochondrial structure in hippocampal neurons. PLoS ONE 12:e0168840. https://doi.org/10.1371/journal.pone.0168840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim JE, Qun H, Ya QC et al (2014) mTOR-targeted therapy: differential perturbation to mitochondrial membrane potential and permeability transition pore plays a role in therapeutic response. Biochem Biophys Res Commun 447:184–191. https://doi.org/10.1016/j.bbrc.2014.03.124

    Article  CAS  PubMed  Google Scholar 

  127. Foster KA, Galeffi F, Gerich FJ et al (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79:136–171. https://doi.org/10.1016/j.pneurobio.2006.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675. https://doi.org/10.1073/pnas.88.9.3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sick TJ, Perez-Pinzon MA (1999) Optical methods for probing mitochondrial function in brain slices. Methods 18:104–108. https://doi.org/10.1006/meth.1999.0763

    Article  CAS  PubMed  Google Scholar 

  130. Salvioli S, Ardizzoni A, Franceschi C et al (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82. https://doi.org/10.1016/s0014-5793(97)00669-8

    Article  CAS  PubMed  Google Scholar 

  131. Keil VC, Funke F, Zeug A et al (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch Eur J Physiol 462:693–708. https://doi.org/10.1007/s00424-011-1012-8

    Article  CAS  Google Scholar 

  132. Arrazola MS, Inestrosa NC (2015) Monitoring mitochondrial membranes permeability in live neurons and mitochondrial swelling through electron microscopy analysis. Methods Mol Biol 1254:87–97. https://doi.org/10.1007/978-1-4939-2152-2_7

    Article  CAS  PubMed  Google Scholar 

  133. Hirano H, Parkhouse B, Nicolson GL et al (1972) Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: its implications for membrane biogenesis. PNAS 69:2945–2949. https://doi.org/10.1073/pnas.69.10.2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lesnefsky EJ, Qun C, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118:1593–1611. https://doi.org/10.1161/CIRCRESAHA.116.307505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Trnka J, Elkalaf M, Andël M (2015) Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE 10:e0121837. https://doi.org/10.1371/journal.pone.0121837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morganti C, Bonora M, Ito K et al (2019) Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Res 40:101573. https://doi.org/10.1016/j.scr.2019.101573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206. https://doi.org/10.1016/j.cmet.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  138. Briston T, Roberts M, Lewis S et al (2017) Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep-UK 7:10492. https://doi.org/10.1038/s41598-017-10673-8

    Article  CAS  Google Scholar 

  139. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385. https://doi.org/10.1016/s0008-6363(03)00533-9

    Article  CAS  PubMed  Google Scholar 

  140. Koopman W-JH, Nijtmans L-GW, Dieteren C-EJ et al (2010) Mammalian mitochondrial complex I-biogenesis, regulation, and reaction oxygen species generation. Antioxid Redox Sign 12:1431–1470. https://doi.org/10.1089/ars.2009.2743

    Article  CAS  Google Scholar 

Download references

Funding

This publication was supported by National Natural Science Foundation of China (Grant No. 81900045) and Sanming Project of Medicine in Shenzhen (SZSM201801060).

Author information

Authors and Affiliations

Authors

Contributions

PZ contributed to suggesting ideas and critically revise the manuscript; YC and MP participated in original writing of the manuscript; JM and XS involved in literature search ; and WC did the data analysis .

Corresponding authors

Correspondence to Weiling Cao or Peng Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Consent to publish

All authors have agreed to publish this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Pan, M., Ma, J. et al. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem 476, 493–506 (2021). https://doi.org/10.1007/s11010-020-03926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03926-0

Keywords

Navigation