Skip to main content
Log in

Targeting glutathione with the triterpenoid CDDO-Im protects against benzo-a-pyrene-1,6-quinone-induced cytotoxicity in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Epidemiological studies have exhibited a strong correlation between exposure to air pollution and deaths due to vascular diseases such as atherosclerosis. Benzo-a-pyrene-1,6-quinone (BP-1,6-Q) is one of the components of air pollution. This study was to examine the role of GSH in BP-1,6-Q mediated cytotoxicity in human EA.hy96 endothelial cells and demonstrated that induction of cellular glutathione by a potent triterpenoid, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole), protects cells against BP-1,6-Q induced protein and lipid damage. Incubation of EA.hy926 endothelial cells with BP-1,6-Q caused a significant increase in dose-dependent cytotoxicity as measured by LDH release assay and both apoptotic and necrotic cell deaths as measured by flow cytometric analysis. Incubation of EA.hy926 endothelial cells with BP-1,6-Q also caused a significant decrease in cellular GSH levels. The diminishment of cellular GSH by buthionine sulfoximine (BSO) potentiated BP-1,6-Q-induced toxicity significantly suggesting a critical involvement of GSH in BP-1,6-Q induced cellular toxicity. GSH-induction by CDDO-Im significantly protects cells against BP-1,6-Q induced protein and lipid damage as measured by protein carbonyl (PC) assay and thiobarbituric acid reactive substances (TBARS) assay, respectively. However, the co-treatment of cells with CDDO-Im and BSO reversed the cytoprotective effect of CDDO-Im on BP-1,6-Q-mediated lipid peroxidation and protein oxidation. These results suggest that induction of GSH by CDDO-Im might be the important cellular defense against BP-1,6-Q induced protein and lipid damage. These findings would contribute to better understand the action of BP-1,6-Q and may help to develop novel therapies to protect against BP-1,6-Q-induced atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data of this study can be obtained from the corresponding author upon reasonable request.

References

  1. American Heart Association (2017) Cardiovascular disease: a costly burden for America projections through 2035. AHA, Dallas

    Google Scholar 

  2. Mudau M, Genis A, Lochner A, Strijdom H (2012) Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 23:222–231. https://doi.org/10.5830/CVJA-2011-068

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 93:50–55. https://doi.org/10.1172/JCI116983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  Google Scholar 

  5. Lee BJ, Kim B, Lee K (2014) Air pollution exposure and cardiovascular disease. Toxicol Res 30:71–75. https://doi.org/10.5487/TR.2014.30.2.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1

    Article  CAS  PubMed  Google Scholar 

  7. Bai Y, Sun Q (2016) Fine particulate matter air pollution and atherosclerosis: mechanistic insights. Biochim Biophys Acta 1860:2863–2868. https://doi.org/10.1016/j.bbagen.2016.04.030

    Article  CAS  PubMed  Google Scholar 

  8. Rekhadevi PV, Diggs DL, Huderson AC, Harris KL, Archibong AE, Ramesh A (2014) Metabolism of the environmental toxicant benzo(a)pyrene by subcellular fractions of human ovary. Hum Exp Toxicol 33:196–202. https://doi.org/10.1177/0960327113489050

    Article  CAS  PubMed  Google Scholar 

  9. Ramos KS, Zhang Y, Sadhu DN, Chapkin RS (1996) The induction of proliferative vascular smooth muscle cell phenotypes by benzo(a)pyrene is characterized by up-regulation of inositol phospholipid metabolism and c-Ha-ras gene expression. Arch Biochem Biophys 332:213–222. https://doi.org/10.1006/abbi.1996.0335

    Article  CAS  PubMed  Google Scholar 

  10. Curfs DM, Lutgens E, Gijbels MJ, Kockx MM, Daemen MJ, van Schooten FJ (2004) Chronic exposure to the carcinogenic compound benzo[a]pyrene induces larger and phenotypically different atherosclerotic plaques in ApoE-knockout mice. Am J Pathol 164:101–108. https://doi.org/10.1016/S0002-9440(10)63101-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hough JL, Baird MB, Sfeir GT, Pacini CS, Darrow D, Wheelock C (1993) Benzo(a)pyrene enhances atherosclerosis in white carneau and show racer pigeons. Arterioscler Thromb 13:1721–1727

    Article  CAS  Google Scholar 

  12. Twerdok LE, Mosebrook DR, Trush MA (1992) Comparison of oxidant-generation and BP-diol activation by bone marrow cells from C57Bl/6 and DBA/2 mice: implications for risk of bone marrow toxicity induced by polycyclic hydrocarbons. Toxicol Appl Pharmacol 112:266–272

    Article  CAS  Google Scholar 

  13. Souza T, Jennen D, van Delft J, van Herwijnen M, Kyrtoupolos S, Kleinjans J (2016) New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol 90:1449–1458. https://doi.org/10.1007/s00204-015-1572-z

    Article  CAS  PubMed  Google Scholar 

  14. US Environmental Protection Agency (2006) Technical factsheet on: polycyclic aromatic hydrocarbons (PAHs). US Environmental Protection Agency, Washington, DC

    Google Scholar 

  15. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276

    Article  CAS  Google Scholar 

  16. Shukla H, Chitrakar R, Bibi HA, Gaje G, Koucheki A, Trush MA, Zhu H, Li YR, Jia Z (2020) Reactive oxygen species production by BP-1, 6-quinone and its effects on the endothelial dysfunction: Involvement of the mitochondria. Toxicol Lett 322:120–130

    Article  CAS  Google Scholar 

  17. Rosenblat M, Coleman R, Aviram M (2002) Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 163:17–28

    Article  CAS  Google Scholar 

  18. Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F (1998) Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 97:1930–1934. https://doi.org/10.1161/01.cir.97.19.1930

    Article  CAS  PubMed  Google Scholar 

  19. Morrison JA, Jacobsen DW, Sprecher DL, Robinson K, Khoury P, Daniels SR (1999) Serum glutathione in adolescent males predicts parental coronary heart disease. Circulation 100:2244–2247

    Article  CAS  Google Scholar 

  20. Delgado-Saborit JM, Alam MS, Godri Pollitt KJ, Stark C, Harrisona RM (2013) Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos Environ 77:974–982

    Article  CAS  Google Scholar 

  21. Agency for Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  22. Spiteller G (2005) The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol Nutr Food Res 49:999–1013. https://doi.org/10.1002/mnfr.200500055

    Article  CAS  PubMed  Google Scholar 

  23. Carpenter KL, Taylor SE, Ballantine JA, Fussell B, Halliwell B, Mitchinson MJ (1993) Lipids and oxidised lipids in human atheroma and normal aorta. Biochim Biophys Acta 1167:121–130

    Article  CAS  Google Scholar 

  24. Glavind J, Hartmann S, Clemmesen J, Jessen KE, Dam H (1952) Studies on the role of lipoperoxides in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol Microbiol Scand 30:1–6

    Article  CAS  Google Scholar 

  25. Harland WA, Gilbert JD, Steel G, Brooks CJ (1971) Lipids of human atheroma. 5. The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis 13:239–246

    Article  CAS  Google Scholar 

  26. Heinecke JW (1999) Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. FASEB J 13:1113–1120

    Article  CAS  Google Scholar 

  27. Stringer MD, Görög PG, Freeman A, Kakkar VV (1989) Lipid peroxides and atherosclerosis. Br Med J 298:281–284. https://doi.org/10.1136/bmj.298.6669.281

    Article  CAS  Google Scholar 

  28. Boutin AC, Shirali P, Garcon G, Gosset P, Leleu B, Marez T, Bernard A, Haguenoer JM (1998) Peripheral markers (Clara cell protein and alpha-glutathione S-transferase) and lipidoperoxidation (malondialdehyde) assessment in Sprague-Dawley rats instilled with haematite and benzo[a]pyrene. J Appl Toxicol 18:39–45

    Article  CAS  Google Scholar 

  29. Bhagavathy S, Sumathi P (2012) Stabilization of membrane bound ATPases and lipid peroxidation by carotenoids from Chlorococcum humicola in Benzo(a)pyrene induced toxicity. Asian Pac J Trop Biomed 2:380–384. https://doi.org/10.1016/S2221-1691(12)60060-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Byczkowski JZ, Kulkarni AP (1990) Lipid peroxidation-coupled co-oxygenation of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol in human term placental microsomes. Placenta 11:17–26

    Article  CAS  Google Scholar 

  31. Godschalk R, Curfs D, Bartsch H, Van Schooten FJ, Nair J (2003) Benzo[a]pyrene enhances lipid peroxidation induced DNA damage in aorta of apolipoprotein E knockout mice. Free Radic Res 37:1299–1305

    Article  CAS  Google Scholar 

  32. Kwiecien S, Jasnos K, Magierowski M, Sliwowski Z, Pajdo R, Brzozowski B, Mach T, Wojcik D, Brzozowski T (2014) Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury. J Physiol Pharmacol 65:613–622

    CAS  PubMed  Google Scholar 

  33. Alvarez JG, Storey BT (1989) Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res 23:77–90. https://doi.org/10.1002/mrd.1120230108

    Article  CAS  PubMed  Google Scholar 

  34. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916. https://doi.org/10.1161/01.CIR.0000093660.86242.BB

    Article  PubMed  Google Scholar 

  36. Fu S, Davies MJ, Stocker R, Dean RT (1998) Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J 333(Pt 3):519–525

    Article  CAS  Google Scholar 

  37. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1):1–18

    Article  CAS  Google Scholar 

  38. Belch JJ, Bridges AB, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248

    Article  CAS  Google Scholar 

  39. Nuttall SL, Martin U, Sinclair AJ, Kendall MJ (1998) Glutathione: in sickness and in health. Lancet 351:645–646

    Article  CAS  Google Scholar 

  40. Cals MJ, Succari M, Meneguzzer E, Ponteziere C, Bories PN, Devanlay M, Desveaux N, Gatey M, Luciani L, Blonde-Cynober F, Coudray-Lucas C (1997) Markers of oxidative stress in fit, health-conscious elderly people living in the Paris area. The Research Group on Ageing (GERBAP). Nutrition 13:319–326

    Article  CAS  Google Scholar 

  41. Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, Vaccarino V, Harrison DG, Quyyumi AA (2006) The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol 47:1005–1011. https://doi.org/10.1016/j.jacc.2005.09.063

    Article  CAS  PubMed  Google Scholar 

  42. Callegari A, Liu Y, White CC, Chait A, Gough P, Raines EW, Cox D, Kavanagh TJ, Rosenfeld ME (2011) Gain and loss of function for glutathione synthesis: impact on advanced atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 31:2473–2482. https://doi.org/10.1161/ATVBAHA.111.229765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shah H, Speen AM, Saunders C, Brooke EA, Nallasamy P, Zhu H, Li YR, Jia Z (2014) Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism. Exp Biol Med (Maywood) 1000:10000. https://doi.org/10.1177/1535370214563900

    Article  CAS  Google Scholar 

  44. Liby K, Hock T, Yore MM, Suh N, Place AE, Risingsong R, Williams CR, Royce DB, Honda T, Honda Y, Gribble GW, Hill-Kapturczak N, Agarwal A, Sporn MB (2005) The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res 65:4789–4798. https://doi.org/10.1158/0008-5472.CAN-04-4539

    Article  CAS  PubMed  Google Scholar 

  45. Reisman SA, Buckley DB, Tanaka Y, Klaassen CD (2009) CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes. Toxicol Appl Pharmacol 236:109–114. https://doi.org/10.1016/j.taap.2008.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bouïs D, Hospers GA, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4:91–102

    Article  Google Scholar 

  47. Thornhill M, Li J, Haskard D (1993) Leucocyte endothelial cell adhesion: a study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926. Scand J Immunol 38:279–286

    Article  CAS  Google Scholar 

  48. Li JZ, Ke Y, Misra HP, Trush MA, Li YR, Zhu H, Jia Z (2014) Mechanistic studies of cancer cell mitochondria-and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent. Toxicol Appl Pharmacol 281:285–293

    Article  CAS  Google Scholar 

  49. Jia Z, Zhu H, Misra H, Li Y (2009) Cruciferous nutraceutical 3H–1, 2-dithiole-3-thione protects human primary astrocytes against neutocytotoxicity elicited by MPP+, 6-OHDA, acrolein and HNE. Neurochem Res 34(11):1924–1934

    Article  CAS  Google Scholar 

  50. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 10000:10000. https://doi.org/10.3791/2597

    Article  CAS  Google Scholar 

  51. Speen A, Jones C, Patel R, Shah H, Nallasamy P, Brooke EA, Zhu H, Li YR, Jia ZJT (2015) Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes. Toxicol Lett 238:32–42

    Article  CAS  Google Scholar 

  52. Jia Z, Nallasamy P, Liu D, Shah H, Li JZ, Chitrakar R, Si H, McCormick J, Zhu H, Zhen W (2015) Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway. J Nutr Biochem 26:293–302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from UNCG.

Author information

Authors and Affiliations

Authors

Contributions

ZJ designed the experiments. HS, ZJ, HYL, AK, HAB, GG completed the experiments and processed the experimental data analysis with substantial input provided by YRL, HZ, and XS. YRL, HZ, and XS also provided useful comments and feedback for the manuscript.

Corresponding author

Correspondence to Zhenquan Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, H., Lee, H.Y., Koucheki, A. et al. Targeting glutathione with the triterpenoid CDDO-Im protects against benzo-a-pyrene-1,6-quinone-induced cytotoxicity in endothelial cells. Mol Cell Biochem 474, 27–39 (2020). https://doi.org/10.1007/s11010-020-03831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03831-6

Keywords

Navigation