Skip to main content
Log in

Protective effects of acetylcholine on hypoxia-induced endothelial-to-mesenchymal transition in human cardiac microvascular endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial-to-mesenchymal transition (EndMT) has been reported as a key factor in myocardial fibrosis. Acetylcholine (ACh), a neurotransmitter of the vagus nerve, has been confirmed to exert cardio-protective properties with unclear mechanisms. In this study, the specific markers of cell injury, EndMT, inflammation, and autophagy were measured. We found that treatment with ACh prevented hypoxia-induced cell viability reduction and apoptosis in human cardiac microvascular endothelial cells (HCMECs). Additionally, our results indicate that pre-treatment with ACh significantly suppresses hypoxia-induced EndMT and NF-κB activation in HCMECs. ACh also reduced hypoxia-inducible factor (HIF)-1ɑ protein levels under hypoxia. Knock down of HIF-1ɑ enhanced the inhibitory effect of ACh on NF-κB activation. The NF-κB-specific small molecule inhibitor BAY 11-7082, prostaglandin E2, and LY294002 prevented hypoxia-induced EndMT. Moreover, our data show that hypoxia triggers autophagy in HCMECs, and ACh significantly upregulates autophagy activity. Pre-treatment of HCMECs with 3-methyladenine or chloroquine partially reversed ACh-induced EndMT inhibition. These results suggest that ACh may confer protection against hypoxia-induced EndMT through the inhibition of NF-κB and the induction of autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

α-SMA:

α-Smooth muscle actin

Ach:

Acetylcholine

AMI:

Acute myocardial infarction

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

EndMT:

Endothelial-to-mesenchymal transition

HCAECs:

Human coronary artery endothelial cells

HCMECs:

Human cardiac microvascular endothelial cells

HUVECs:

Human umbilical vein endothelial cells

MF:

Myocardial fibrosis

PBS:

Phosphate buffered saline

PECAM-1:

Platelet endothelial cell adhesion molecule-1

TEM:

Transmission electron microscopy

VE-cad:

Vascular endothelial cadherin

References

  1. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. https://doi.org/10.1016/S0140-6736(14)60107-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: going 'In' but not 'Out' of trichome cavities. Trends Plant Sci 22:930–938. https://doi.org/10.1016/j.tplants.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C (2018) Isoproterenol-induced cardiac ischemia and fibrosis: plant-based approaches for intervention. Phytother Res 32:1908–1932. https://doi.org/10.1002/ptr.6152

    Article  PubMed  Google Scholar 

  4. Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 125:4514–4528. https://doi.org/10.1172/JCI82719

    Article  PubMed  PubMed Central  Google Scholar 

  5. Correia AC (2016) Moonen J-RAJ, Brinker MGL, Krenning G, FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-beta signaling. J Cell Sci 129:569–579. https://doi.org/10.1242/jcs.176248

    Article  CAS  PubMed  Google Scholar 

  6. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R (2010) Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem 285:20202–20212. https://doi.org/10.1074/jbc.M110.102012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242. https://doi.org/10.1006/dbio.2000.0106

    Article  CAS  PubMed  Google Scholar 

  8. Chen PY, Simons M (2016) When endothelial cells go rogue. Embo Mol Med 8:1–2. https://doi.org/10.15252/emmm.201505943

    Article  CAS  PubMed  Google Scholar 

  9. Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1–L8. https://doi.org/10.1152/ajplung.00378.2006

    Article  CAS  PubMed  Google Scholar 

  10. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428. https://doi.org/10.1038/nrc2131

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Tan X, Tampe B, Sanchez E, Zeisberg M, Zeisberg EM (2015) Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem 290:16653–16664. https://doi.org/10.1074/jbc.M115.636944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fleenor BS, Marshall KD, Rippe C, Seals DR (2012) Replicative aging induces endothelial to mesenchymal transition in human aortic endothelial cells: potential role of inflammation. J Vasc Res 49:59–64. https://doi.org/10.1159/000329681

    Article  PubMed  Google Scholar 

  13. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou J, Liu Y, Li B, Zheng Z, Ke X, Hao Y, Li X, Li X, Liu F, Zhang Z (2017) Autophagy attenuates endothelial-to-mesenchymal transition by promoting Snail degradation in human cardiac microvascular endothelial cells. Biosci Rep. https://doi.org/10.1042/BSR20171049

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Zou J, Li B, Wang Y, Wang D, Hao Y, Ke X, Li X (2017) RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells. Int J Mol Med 40:65–74. https://doi.org/10.3892/ijmm.2017.2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM (2015) Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 185:1850–1858. https://doi.org/10.1016/j.ajpath.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  17. Sena CM, Pereira AM, Seica R (1832) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013:2216–2231. https://doi.org/10.1016/j.bbadis.2013.08.006

    Article  CAS  Google Scholar 

  18. Lee JG, Ko MK, Kay EP (2012) Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res 95:35–39. https://doi.org/10.1016/j.exer.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  19. Kanaji N, Sato T, Nelson A, Wang X, Li Y, Kim M, Nakanishi M, Basma H, Michalski J, Farid M, Chandler M, Pease W, Patil A, Rennard SI, Liu X (2011) Inflammatory cytokines regulate endothelial cell survival and tissue repair functions via NF-κB signaling. J Inflamm Res 4:127–138. https://doi.org/10.2147/JIR.S19461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maleszewska M (2013) Moonen J-RAJ, Huijkman N, van de Sluis B, Krenning G, Harmsen MC, IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology 218:443–454. https://doi.org/10.1016/j.imbio.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  21. Song S, Ji Y, Zhang G, Zhang X, Li B, Li D, Jiang W (2018) Protective effect of atazanavir sulphate against pulmonary fibrosis in vivo and in vitro. Basic Clin Pharmacol Toxicol 122:199–207. https://doi.org/10.1111/bcpt.12871

    Article  CAS  PubMed  Google Scholar 

  22. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107(1):1–3. https://doi.org/10.1016/s0092-8674(01)00518-9

    Article  CAS  PubMed  Google Scholar 

  23. Krieg T, Qin Q, Philipp S, Alexeyev MF, Cohen MV, Downey JM (2004) Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol Heart Circ Physiol 287:H2606–H2611. https://doi.org/10.1152/ajpheart.00600.2004

    Article  CAS  PubMed  Google Scholar 

  24. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103:14767–14772. https://doi.org/10.1073/pnas.0606877103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103:18154–18159. https://doi.org/10.1073/pnas.0602235103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG (2016) Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12:245–260. https://doi.org/10.1080/15548627.2015.1071759

    Article  CAS  PubMed  Google Scholar 

  27. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:P280–P293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  Google Scholar 

  28. Wu X, He L, Chen F, He X, Cai Y, Zhang G, Yi Q, He M, Luo J (2014) Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS ONE 9:e112891. https://doi.org/10.1371/journal.pone.0112891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S (2011) The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res 91:330–339. https://doi.org/10.1093/cvr/cvr073

    Article  CAS  PubMed  Google Scholar 

  30. Roy A, Guatimosim S, Prado VF, Gros R, Prado MA (2015) Cholinergic activity as a new target in diseases of the heart. Mol Med 20:527–537. https://doi.org/10.2119/molmed.2014.00125

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoover DB, Ganote CE, Ferguson SM, Blakely RD, Parsons RL (2004) Localization of cholinergic innervation in guinea pig heart by immunohistochemistry for high-affinity choline transporters. Cardiovasc Res 62:112–121. https://doi.org/10.1016/j.cardiores.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  32. Kakinuma Y, Tsuda M, Okazaki K, Akiyama T, Arikawa M, Noguchi T, Sato T (2013) Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1alpha-related defense mechanisms. J Am Heart Assoc 2:e004887. https://doi.org/10.1161/JAHA.112.004887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang R, Wugeti N, Sun J, Yan H, Guo Y, Zhang L, Ma M, Guo X, Jiao C, Xu W, Li T, Liu H, Ma Y (2014) Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine. Int J Clin Exp Med 7:2615–2623

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81860052, 81871113).

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the design, interpretation of the data, drafting and review of the manuscript.

Corresponding author

Correspondence to Fengxiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, X., Zhu, Y. et al. Protective effects of acetylcholine on hypoxia-induced endothelial-to-mesenchymal transition in human cardiac microvascular endothelial cells. Mol Cell Biochem 473, 101–110 (2020). https://doi.org/10.1007/s11010-020-03811-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03811-w

Keywords

Navigation