Skip to main content
Log in

The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme’s finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spellicy CJ, Xu D, Cobb G et al (2010) Investigating the mechanism of disease in the RP10 form of retinitis pigmentosa. Adv Exp Med Boil 664:541–548. https://doi.org/10.1007/978-1-4419-1399-9_62

    Article  CAS  Google Scholar 

  2. Kennan A, Aherne A, Palfi A et al (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(/) mice. Hum Mol Genet 11:547–557. https://doi.org/10.1007/978-1-4615-0067-4_2

    Article  PubMed  CAS  Google Scholar 

  3. Bowne S, Sullivan L, Blanton S et al (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11(5):559–568. https://doi.org/10.1093/hmg/11.5.559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bowne S, Sullivan L, Mortimer S et al (2006) Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. Invest Ophthalmol Vis Sci 47(1):34–42. https://doi.org/10.1167/iovs.05-0868

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hedstrom L (1999) IMP dehydrogenase: mechanism of action and inhibition. Curr Med Chem 6:545–560. https://doi.org/10.1021/cr900021w

    Article  PubMed  CAS  Google Scholar 

  6. Bowne S, Liu Q, Sullivan LS et al (2006) Why do mutations in the ubiquitously expressed housekeeping gene IMPDH1 cause retina-specific photoreceptor degeneration? Invest Ophthalmol Vis Sci 47(9):3754–3765. https://doi.org/10.1167/iovs.06-0207

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spellicy C, Daiger S, Sullivan L et al (2007) Characterization of retinal inosine monophosphate dehydrogenase 1 in several mammalian species. Mol Vis 13:1866–1872

    PubMed  CAS  Google Scholar 

  8. Gunter JH, Thomas EC, Lengefeld N et al (2008) Characterization of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int J Biochem Cell Biol 40(9):1716–1728. https://doi.org/10.1016/j.biocel.2007.12.018

    Article  PubMed  CAS  Google Scholar 

  9. Hedstrom L (2009) IMP dehydrogenase: structure, mechanism and inhibition. Chem Rev 109(7):2903–2928. https://doi.org/10.1021/cr900021w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hedstrom L (2008) IMP dehydrogenase-linked retinitis pigmentosa. Nucleosides, Nucleotides Nucleic Acids 27(6):839–849. https://doi.org/10.1080/15257770802146486

    Article  PubMed  CAS  Google Scholar 

  11. Mortimer SE, Xu D, McGrew D et al (2008) IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA. J Biol Chem 283(52):36354–36360. https://doi.org/10.1074/jbc.M806143200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kozhevnikova EN, Van der Knaap JA, Pindyurin AV et al (2012) Metabolic enzyme IMPDH is also a transcription factor regulated by cellular state. Mol Cell 47(1):133–139. https://doi.org/10.1016/j.molcel.2012.04.030

    Article  PubMed  CAS  Google Scholar 

  13. Labesse G, Alexandre T, Vaupre L et al (2013) MgATP regulates allostery and fiber formation in IMPDHs. Structure 21(6):975–985. https://doi.org/10.1016/j.str.2013.03.011

    Article  PubMed  CAS  Google Scholar 

  14. Moynie L, Schnell R, McMahon SA et al (2013) The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr F 69(Pt 1):25–34. https://doi.org/10.1107/s1744309112044739

    Article  CAS  Google Scholar 

  15. Xu D, Cobb G, Spellicy C et al (2008) Retinal isoforms of inosine 5-monophosphate dehydrogenase type 1 are poor nucleic acid binding proteins. Arch Biochem Biophys 472:100–104. https://doi.org/10.1016/j.abb.2008.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  17. Srivastava M, Gupta SK, Abhilash PC, Singh N (2012) Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 18(7):2971–2979. https://doi.org/10.1007/s00894-011-1320-0

    Article  PubMed  CAS  Google Scholar 

  18. Yang J, Yan R, Roy A et al (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8. https://doi.org/10.1038/nmeth.3213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):74–181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  Google Scholar 

  20. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101(10):2525–2534. https://doi.org/10.1016/j.bpj.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lovell SC, Davis IW, Arendall WB et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins Struct Funct Genet 50(3):437–450. https://doi.org/10.1002/prot.10286

    Article  PubMed  CAS  Google Scholar 

  22. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  23. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  24. van Zundert GC, Rodrigues JP, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  PubMed  CAS  Google Scholar 

  25. Wassenaar TA, van Dijk M, Loureiro-Ferreira N et al (2012) Structural biology on the grid. J Grid Comput 10:743–767. https://doi.org/10.1007/s10723-012-9246-z

    Article  Google Scholar 

  26. Risal D, Strickler MD, Goldstein BM (2003) Crystal structure of the human type I inosine monophosphate dehydrogenase and implications for isoform specificity (to be published)

  27. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  PubMed  CAS  Google Scholar 

  28. Porollo AA, Adamczak R, Meller J (2004) POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins. Bioinformatics 20(15):2460–2462. https://doi.org/10.1093/bioinformatics/bth248

    Article  PubMed  CAS  Google Scholar 

  29. Sintchak MD, Fleming MA, Futer O et al (1996) Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85(6):921–930. https://doi.org/10.1016/s0092-8674(00)81275-1

    Article  PubMed  Google Scholar 

  30. Buey RM, Ledesma-Amaro R, Campoy A et al (2015) Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 6:8923. https://doi.org/10.1038/ncomms9923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Carr SF, Papp E, Wu JC, Natsumeda Y (1993) Characterization of human type I and type II IMP dehydrogenases. J Biol Chem 268:27286–27290

    PubMed  CAS  Google Scholar 

  32. Hager P, Collart F, Huberman E, Mitchell BS (1995) Recombinant human inosine monophosphate dehydrogenase type I and type II proteins. Purification and characterization of inhibitor binding. Biochem Pharmacol 49(9):1323–1329. https://doi.org/10.1016/0006-2952(95)00026-v

    Article  PubMed  CAS  Google Scholar 

  33. Mortimer SE, Hedstrom L (2005) Autosomal dominant retinitis pigmentosa mutations in inosine 5′-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochem J 390:41–47. https://doi.org/10.1042/bj20042051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang XT, Mion B, Aherne A (1812) Engel PC (2011) Molecular recruitment as a basis for negative dominant inheritance? Propagation of misfolding in oligomers of IMPDH1, the mutated enzyme in the RP10 form of retinitis pigmentosa. Biochim Biophys Acta 11:1472–1476. https://doi.org/10.1016/j.bbadis.2011.07.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the joint financial support of this investigation by the Research Council of University of Tehran. We also thank Dr. S. Soheili and Dr. E. Ranaei Pirmardan from the National Institute of Genetic Engineering and Biotechnology (Karaj, Tehran) for their assistance in retina isolation from the mouse eyes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Yazdanparast.

Ethics declarations

Conflict of interest

The authors declare that they do not have competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andashti, B., Yazdanparast, R., Barzegari, E. et al. The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol Cell Biochem 465, 155–164 (2020). https://doi.org/10.1007/s11010-019-03675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03675-9

Keywords

Navigation