Skip to main content
Log in

Density-dependent ERK MAPK expression regulates MMP-9 and influences growth

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous work has shown that expression of the extracellular signal-regulated kinase (ERK) is decreased by high density in normal fibroblast cells, and this was correlated with increased expression of mitogen-activated protein kinase phosphatases. Because of these differences in ERK regulation upon contact inhibition, it is likely that other cellular responses may be influenced by the attainment of a contact-inhibited state. Expression of matrix metalloproteinase-9 and cadherin cleavage were both found to be decreased upon reaching high culture density. Inhibition of ERK activity with the MEK inhibitor PD98059 resulted in increased expression of cadherins, while constitutive activation of ERK through the use of expression of an ERK construct with a D319N sevenmaker mutation resulted in decreased expression of cadherins and enhanced colony formation of HT-1080 fibrosarcoma cells. Taken together, these results corroborate a role for the regulation of ERK upon the attainment of a contact-inhibited state with increased expression of cadherins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holley RW (1975) Control of growth of mammalian cells in culture. Nature 258:487–490

    Article  CAS  PubMed  Google Scholar 

  2. Nelson PJ, Daniel TO (2002) Emerging targets: molecular mechanisms of contact-mediated growth control. Kidney Int 61: S99–S105. https://doi.org/10.1046/j.1523-1755.2002.0610s1099.x

  3. Alkasalias T, Flaberg E, Kashuba V, Alexeyenko A, Pavlova T, Savchenko A, Szekely L, Klein G, Guven H (2014) Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. PNAS 111:17188–17193. https://doi.org/10.1073/pnas.1419554111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shriaman B (2004) Mechanical feedback as a possible regulator of tissue growth. PNAS 120:3318–3323. https://doi.org/10.1073/pnas.0404782102

    Article  CAS  Google Scholar 

  5. McClatchey AI, Yap AS (2012) Contact inhibition of proliferation redux. Curr Opin Cell Biol 24(5):685 – 94. https://doi.org/10.1016/j.ceb.2012.06.009

  6. Roycroft A, Mayor R (2016) Molecular basis of contact inhibition of locomotion. Cell Mol Life Sci 73:1119–1130. https://doi.org/10.1007/s00018-015-2090-0

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman L, Jensen CC, Yoshigi M, Beckerle M (2017) Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Mol Biol Cell 28:2661–2675. https://doi.org/10.1091/mbc.E17-02-0087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu HJ, Lee CF, Locke A, Vanderzyl SQ, Kaunas R (2010) Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS ONE 5:e12470. https://doi.org/10.1371/journal.pone.0012470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026. https://doi.org/10.1016/j.cell.2006.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu Z, Jiang G, Blume-Jensen P, Hunter T (2001) Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21:4016–4031. https://doi.org/10.1128/MCB.21.12.4016-4031.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin B, Yin T, Wu YI, Inoue T, Levchenko A (2015) Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration. Nature Commun 6:6619. https://doi.org/10.1038/ncomms7619

    Article  CAS  Google Scholar 

  12. Sun P (2014) Contact inhibition against senescence. Oncotarget 5:7212–7213. https://doi.org/10.18632/oncotarget.2446

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–77. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  14. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  15. Pelech SL (1993) Networking with protein kinases. Curr Biol 3:513–515

    Article  CAS  PubMed  Google Scholar 

  16. Zheng CF, Guan KL (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13:1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Biochimica et Biophysica Acta (BBA). Molecular Cell Research 1773:1227–1237. https://doi.org/10.1016/j.bbamcr.2006.12.002

    Article  CAS  Google Scholar 

  18. Wayne J, Sielski J, Rizvi A, Georges K, Hutter D (2006) ERK regulation upon contact inhibition in fibroblasts. Mol Cell Biochem 286:181–189

    Article  CAS  PubMed  Google Scholar 

  19. Slisz M, Rothenberger E, Hutter D (2007) Attenuation of p38 MAPK activity upon contact inhibition in fibroblasts. Mol Cell Biochem 308:65–73

    Article  CAS  PubMed  Google Scholar 

  20. Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478–480. https://doi.org/10.1126/science.1411546

    Article  CAS  PubMed  Google Scholar 

  21. Chen P, Hutter D, Yang X, Gorospe M, Davis RJ, Liu Y (2001) Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem 276:29440–29449. https://doi.org/10.1074/jbc.M103463200

    Article  CAS  PubMed  Google Scholar 

  22. http://diyhpl.us/~bryan/irc/protocol-online/protocol-cache/softagar.htm. Accessed 13 July 2018

  23. Dufour A, Stanley Z, Sampson NS, Kuscu C, Cao J (2010) Role of matrix metalloproeinase-9 dimers in cell migration. J Biol Chem 285:35944–35956. https://doi.org/10.1074/jbc.M109.091769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta (BBA) 1803:39–54. https://doi.org/10.1016/j.bbamcr.2009.09.015

    Article  CAS  Google Scholar 

  25. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. role in cell survival following oxidant injury. J Biol Chem 271:4132–4138. https://doi.org/10.1074/jbc.271.8.4138

    Article  Google Scholar 

  26. Cerioni L, Palomba L, Cantoni O (2003) The Raf/MEK inhibitor PD98059 enhances ERK1/2 phosphorylation mediated by peroxynitrite via enforced mitochondrial formation of reactive oxygen species. FEBS Lett 537:92–96. https://doi.org/10.1016/S0014-5793(03)00675-6

    Article  CAS  Google Scholar 

  27. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boshert U, Arkinstall S (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1265

    Article  CAS  PubMed  Google Scholar 

  28. Borowicz S, Van Scoyk A, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, Winn RA (2014) The soft agar colony formation assay. J Vis Exp 92:e51998. https://doi.org/10.3791/51998

    Article  CAS  Google Scholar 

  29. Gaballah M, Slisz M, Hutter-Lobo D (2011) Role of JNK-1 regulation in the protection of contact-inhibited fibroblasts from oxidative stress. Mol Cell Biochem 359:105–113. https://doi.org/10.1007/s11010-011-1004-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reunanen N, Kähäri VM. Matrix metalloproteinases in cancer cell invasion. Madame Curie Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6598/. Accessed 17 July 2018

  31. Werb Z (1997) ECM and cell surface proteolysis regulating cellular ecology. Cell 91:7959–7964

    Article  Google Scholar 

  32. Gutman A, Wasylyk B (1990) The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J 9:2241–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et biophysica acta 1803:55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamongkolgit R, Cheepsunthorn P, Pavasant P, Sanchavanakit N (2008) Iron increases MMP-9 expression through activation of AP-1 via ERK/Akt pathway in human head and neck squamous carcinoma cells. Oral Oncol 44:587–594. https://doi.org/10.1016/j.oraloncology.2007.08.005

    Article  CAS  Google Scholar 

  35. Genersch E, Hayess K, Neuenfeld Y, Haller H (2000) Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and independent pathways. J Cell Sci 113:4319–4330

    CAS  PubMed  Google Scholar 

  36. Menakongka A, Suthiphongchai T (2010) Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol 16:713–722. https://doi.org/10.3748/wjg.v16.i6.713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Mattingly RR (2008) Restoration of E-cadherin cell-cell junctions requires both expression of E-cadherin and suppression of ERK MAP kinase activation in Ras-transformed breast epithelial cells. Neoplasia 10:1444–1458

    Google Scholar 

  38. De Bock M, Wang N, Decrock E, Bultynck G, Leybaert L (2015) Intracellular cleavage of the Cx43 C-terminal domain by matix-metalloproteases: a novel contributor to inflammation. Mediat Inflamm https://doi.org/10.1155/2015/257471

  39. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 cleavage of N-cadherin and regulation of cell–cell adhesion and β-catenin nuclear signalling. EMBO J 24:742–752. https://doi.org/10.1038/sj.emboj.7600548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McCusker CD, Alfandari D (2009) Life after proteolysis: exploring the signaling capabilities of classical cadherin cleavage fragments. J Commun Integ Biol 2:155–157. https://doi.org/10.4161/cib.7700

    Article  CAS  Google Scholar 

  41. Ferber EC, Kajita M, Wadlow A, Tobiansky L, Niessen C, Ariga H, Daniel J, Fujita Y (2008) A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem 283:12691–12700. https://doi.org/10.1074/jbc.M708887200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ozawa M, Kobayashi W (2014) Cadherin cytoplasmic domains inhibit the cell surface localization of endogenous E-cadherin, blocking desmosome and tight junction formation and inducing cell dissociation. PLoS ONE 9(8):e105313. https://doi.org/10.1371/journal.pone.0105313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Onder TT, Gupat PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional. Pathw Cancer Res 68:3645–3654. https://doi.org/10.1158/0008-5472.CAN-0702938

    Article  CAS  Google Scholar 

  44. Philippova M, Pfaff D, Kyriakakis E, Buechner SA, Iezza G, Spagnoli GC, Schoenenberger AW, Erne P, Resink TJ (2013) T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur J Cancer 49:2048–2058. https://doi.org/10.1016/j.ejca.2012.12.026

    Article  CAS  PubMed  Google Scholar 

  45. Hutter DE, Till BG, Greene JJ (1997) Redox state changes in density-dependent regulation of proliferation. Exp Cell Res 232:435–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Afroditi Emporelli, Allison Pass, Mena Gaballah, Kaveri Kaushal, Megan Hodges, and Monali Patel for technical assistance. This work was supported by Grant R15GM076076 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health. Additional summer support for P. Patel was provided by the Monmouth University School of Science and the Independent College Fund of New Jersey (ICFNJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Hutter-Lobo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchese, V., Juarez, J., Patel, P. et al. Density-dependent ERK MAPK expression regulates MMP-9 and influences growth. Mol Cell Biochem 456, 115–122 (2019). https://doi.org/10.1007/s11010-019-03496-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03496-w

Keywords

Navigation