Skip to main content
Log in

Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRβ by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRβ binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96:1221–1232

    Article  CAS  Google Scholar 

  2. Maciejko JJ, Holmes DR, Kottke BA, Zinsmeister AR, Dinh DM, Mao SJ (1983) Apolipoprotein A-I as a marker of angiographically assessed coronary-artery disease. N Engl J Med 309:385–389

    Article  CAS  Google Scholar 

  3. Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB (1982) Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis 2:16–26

    Article  CAS  Google Scholar 

  4. Srivastava RA, Srivastava N (2000) High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem 209:131–144

    Article  CAS  Google Scholar 

  5. Barter PJ, Rye KA (1996) Molecular mechanisms of reverse cholesterol transport. Curr Opin Lipidol 7:82–87

    Article  CAS  Google Scholar 

  6. Nikiforova AA, Kheifets GM, Alksnis EG, Parfenova NS, Klimov AN (1988) HDL2b lipoproteins as an acceptor of cholesterol from erythrocyte membrane and the role of lecithin-cholesterol-acyltransferase during this process. Biokhimiia 53:1334–1338

    CAS  PubMed  Google Scholar 

  7. Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ (1995) High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 15:1987–1994

    Article  CAS  Google Scholar 

  8. Diederich W, Orso E, Drobnik W, Schmitz G (2001) Apolipoprotein AI and HDL3 inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis 159:313–324

    Article  CAS  Google Scholar 

  9. Hyka N, Dayer JM, Modoux C, Kohno T, Edwards CK, Roux-Lombard P, Burger D (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes. Blood 97:2381–2389

    Article  CAS  Google Scholar 

  10. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  CAS  Google Scholar 

  11. Klimov AN, Kozhemiakin LA, Pleskov VM, Andreeva LI (1987) Antioxidant effect of high-density lipoproteins in the peroxidation of low-density lipoproteins. Biull Eksp Biol Med 103:550–552

    Article  CAS  Google Scholar 

  12. Brites F, Martin M, Guillas I, Kontush A (2017) Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin 8:66–77

    Article  Google Scholar 

  13. Sorenson RC, Bisgaier CL, Aviram M, Hsu C, Billecke S, La DB (1999) Human serum paraoxonase/arylesterase’s retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A-I stabilizes activity. Arterioscler Thromb Vasc Biol 19:2214–2225

    Article  CAS  Google Scholar 

  14. White CR, Datta G, Giordano S (2017) High-density lipoprotein regulation of mitochondrial function. Adv Exp Med Biol 982:407–429

    Article  CAS  Google Scholar 

  15. Fernandez JA, Deguchi H, Banka CL, Witztum JL, Griffin JH (2015) Re-evaluation of the anticoagulant properties of high-density lipoprotein-brief report. Arterioscler Thromb Vasc Biol 35:570–572

    Article  CAS  Google Scholar 

  16. Eggerman TL, Hoeg JM, Meng MS, Tombragel A, Bojanovski D, Brewer HBJ (1991) Differential tissue-specific expression of human apoA-I and apoA- II. J Lipid Res 32:821–828

    CAS  PubMed  Google Scholar 

  17. Higuchi K, Law SW, Hoeg JM, Schumacher UK, Meglin N, Brewer HBJ (1988) Tissue-specific expression of apolipoprotein A-I (ApoA-I) is regulated by the 5′-flanking region of the human ApoA-I gene. J Biol Chem 263:18530–18536

    CAS  PubMed  Google Scholar 

  18. Sastry KN, Seedorf U, Karathanasis SK (1988) Different cis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol 8:605–614

    Article  CAS  Google Scholar 

  19. Ge R, Rhee M, Malik S, Karathanasis SK (1994) Transcriptional repression of apolipoprotein AI gene expression by orphan receptor ARP-1. J Biol Chem 269:13185–13192

    CAS  PubMed  Google Scholar 

  20. Martin C, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart J-C, Najib-Fruchart J, Glineur C, Staels B (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I. J Clin Invest 107:1423–1432

    Article  CAS  Google Scholar 

  21. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274:32048–32054

    Article  CAS  Google Scholar 

  22. Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V, Karathanasis SK (1991) A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11:3814–3820

    Article  CAS  Google Scholar 

  23. Widom RL, Rhee M, Karathanasis SK (1992) Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 12:3380–3389

    Article  CAS  Google Scholar 

  24. Huuskonen J, Vishnu M, Chau P, Fielding PE, Fielding CJ (2006) Liver X receptor inhibits the synthesis and secretion of apolipoprotein A1 by human liver-derived cells. Biochemistry 45:15068–15074

    Article  CAS  Google Scholar 

  25. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 109:961–971

    Article  CAS  Google Scholar 

  26. Shavva VS, Mogilenko DA, Bogomolova AM, Nikitin AA, Dizhe EB, Efremov AM, Oleinikova GN, Perevozchikov AP, Orlov SV (2016) PPARgamma represses apolipoprotein A-I gene but impedes TNFalpha-mediated ApoA-I downregulation in HepG2 cells. J Cell Biochem 117:2010–2022

    Article  CAS  Google Scholar 

  27. Harnish DC, Malik S, Karathanasis SK (1994) Activation of apolipoprotein AI gene transcription by the liver-enriched factor HNF-3. J Biol Chem 269:28220–28226

    CAS  PubMed  Google Scholar 

  28. Harnish DC, Malik S, Kilbourne E, Costa R, Karathanasis SK (1996) Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4. J Biol Chem 271:13621–13628

    Article  CAS  Google Scholar 

  29. Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Oleinikova GN, Lapikov IA, Tanyanskiy DA, Perevozchikov AP, Orlov SV (2017) FOXO1 and LXRalpha downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones 22:123–134

    Article  CAS  Google Scholar 

  30. Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Tanyanskiy DA, Efremov AM, Oleinikova GN, Perevozchikov AP, Orlov SV (2017) Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRbeta transcription factors. J Cell Biochem 118:382–396

    Article  CAS  Google Scholar 

  31. Major AS, Dove DE, Ishiguro H, Su YR, Brown AM, Liu L, Carter K, Linton MF, Fazio S (2001) Increased cholesterol efflux in apolipoprotein AI (ApoAI)-producing macrophages as a mechanism for reduced atherosclerosis in ApoAI(-/-) mice. Arterioscler Thromb Vasc Biol 21:1790–1795

    Article  CAS  Google Scholar 

  32. Ishiguro H, Yoshida H, Major AS, Zhu T, Babaev VR, Linton MF, Fazio S (2001) Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo. J Biol Chem 276:36742–36748

    Article  CAS  Google Scholar 

  33. Su YR, Blakemore JL, Zhang Y, Linton MF, Fazio S (2008) Lentiviral transduction of ApoAI Into hematopoietic progenitor cells and macrophages applications to cell therapy of atherosclerosis. Arterioscler Thromb Vasc Biol 28:1439–1446

    Article  CAS  Google Scholar 

  34. Mogilenko DA, Orlov SV, Trulioff AS, Ivanov AV, Nagumanov VK, Kudriavtsev IV, Shavva VS, Tanyanskiy DA, Perevozchikov AP (2012) Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates toll-like receptor 4 signaling in human macrophages. FASEB J 26:2019–2030

    Article  CAS  Google Scholar 

  35. McVicar JP, Kunitake ST, Hamilton RL, Kane JP (1984) Characteristics of human lipoproteins isolated by selected-affinity immunosorption of apolipoprotein A-I. Proc Natl Acad Sci USA 81:1356–1360

    Article  CAS  Google Scholar 

  36. Mogilenko DA, Kudriavtsev IV, Shavva VS, Dizhe EB, Vilenskaya EG, Efremov AM, Perevozchikov AP, Orlov SV (2013) Peroxisome proliferator-activated receptor alpha positively regulates complement C3 expression but inhibits TNFalpha-mediated activation of C3 gene in mammalian hepatic derived cells. J Biol Chem 288:1726–1738

    Article  CAS  Google Scholar 

  37. Mogilenko DA, Dizhe EB, Shavva VS, Lapikov IA, Orlov SV, Perevozchikov AP (2009) Role of the nuclear receptors HNF4 alpha, PPARalpha, and LXRs in the TNFalpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry 48:11950–11960

    Article  CAS  Google Scholar 

  38. Mogilenko DA, Kudriavtsev IV, Trulioff AS, Shavva VS, Dizhe EB, Missyul BV, Zhakhov AV, Ischenko AM, Perevozchikov AP, Orlov SV (2012) Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and toll-like receptor 4 activation in human macrophages. J Biol Chem 287:5954–5968

    Article  CAS  Google Scholar 

  39. Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV, Perevozchikov AP (2010) PPARgamma activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells. Biochem Biophys Res Commun 402:477–482

    Article  CAS  Google Scholar 

  40. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  CAS  Google Scholar 

  41. Shavva VS, Mogilenko DA, Dizhe EB, Oleinikova GN, Perevozchikov AP, Orlov SV (2013) Hepatic nuclear factor 4alpha positively regulates complement C3 expression and does not interfere with TNFalpha-mediated stimulation of C3 expression in HepG2 cells. Gene 524:187–192

    Article  CAS  Google Scholar 

  42. Shoda J, Inada Y, Tsuji A, Kusama H, Ueda T, Ikegami T, Suzuki H, Sugiyama Y, Cohen DE, Tanaka N (2004) Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4. J Lipid Res 45:1813–1825

    Article  CAS  Google Scholar 

  43. Trasino SE, Kim YS, Wang TT (2009) Ligand, receptor, and cell type–dependent regulation of ABCA1 and ABCG1 mRNA in prostate cancer epithelial cells. Mol Cancer Ther 8:1934–1945

    Article  CAS  Google Scholar 

  44. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 98:507–512

    Article  CAS  Google Scholar 

  45. Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ, Tontonoz P, Edwards PA (2002) Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages: a critical role for nuclear liver X receptors alpha and beta. J Biol Chem 277:31900–31908

    Article  CAS  Google Scholar 

  46. Duan H, Li Z, Mazzone T (1995) Tumor necrosis factor-alpha modulates monocyte/macrophage apoprotein E gene expression. J Clin Invest 96:915–922

    Article  CAS  Google Scholar 

  47. Wang X, Rader DJ (2007) Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol 22:368–372

    Article  Google Scholar 

  48. Bresnihan B, Gogarty M, Fitzgerald O, Dayer J-M, Burger D (2004) Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production? Arthritis Res Ther 6:R563–R566

    Article  CAS  Google Scholar 

  49. Filou S, Lhomme M, Karavia EA, Kalogeropoulou C, Theodoropoulos V, Zvintzou E, Sakellaropoulos GC, Petropoulou PI, Constantinou C, Kontush A, Kypreos KE (2016) Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function. Biochemistry 55:3752–3762

    Article  CAS  Google Scholar 

  50. Orlov SV, Mogilenko DA, Shavva VS, Dizhe EB, Ignatovich IA, Perevozchikov AP (2010) Effect of TNFalpha on activities of different promoters of human apolipoprotein A-I gene. Biochem Biophys Res Commun 398:224–230

    Article  CAS  Google Scholar 

  51. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99:7604–7609

    Article  CAS  Google Scholar 

  52. Duez H, Lefebvre B, Poulain P, Torra IP, Percevault F, Luc G, Peters JM, Gonzalez FJ, Gineste R, Helleboid S, Dzavik V, Fruchart JC, Fiévet C, Lefebvre P, Staels B (2005) Regulation of human apoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor alpha modulation. Arterioscler Thromb Vasc Biol 25:585–591

    Article  CAS  Google Scholar 

  53. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614

    Article  CAS  Google Scholar 

  54. Rigamonti E, Chinetti-Gbaguidi G, Staels B (2008) Regulation of macrophage functions by PPARalpha, PPARgamma, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 28:1050–1059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. D. Denisenko (Institute of Experimental Medicine, Russia) for helpful discussions and reviewing the manuscript.

Funding

The work has been supported by the Russian Science Foundation (Grant No 17-15-01326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Orlov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavva, V.S., Mogilenko, D.A., Nekrasova, E.V. et al. Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs. Mol Cell Biochem 448, 211–223 (2018). https://doi.org/10.1007/s11010-018-3327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3327-7

Keywords

Navigation