Skip to main content

Advertisement

Log in

VEGF/PKD-1 signaling mediates arteriogenic gene expression and angiogenic responses in reversible human microvascular endothelial cells with extended lifespan

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Microvascular ECs (MVECs) are an ideal model in angiogenesis research. The aim of this study was to determine vascular endothelial growth factor (VEGF)/protein kinase D1 (PKD-1) signaling in expression of arteriogenic genes in human MVECs. To achieve this aim, we transduced specific SV40 large T antigen and telomerase into primary human dermal MVECs (HMVEC-D) to establish reversible HMVECs with extended lifespan (HMVECi-D). HMVECi-D was then exposed to VEGF/VEGF-inducer GS4012 or transduced with constitutively active protein kinase PKD-1 (PKD-CA). Quantitative RT-PCR was performed to detect arteriogenic gene expression. Furthermore, the angiogenic capacity in response to VEGF pathway was evaluated by Matrigel tube-formation and proliferation assays. We observed that VEGF/PKD-1 signaling axis significantly stimulated the expression of arteriogenic genes and promoted EC proliferation, along with downregulation of CD36 expression. Intriguingly, overexpression of PKD-CA also resulted in formation of tip cell morphology, accompanied by increased mRNA of delta-like ligand 4 (DLL4). In conclusion, we have successfully established and characterized HMVECi-D, and showed that VEGF/PKD-1 signaling axis increases angiogenic and arteriogenic gene expression. These studies suggest that the axis may regulate arteriolar differentiation through changing MVEC gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98:159–162. https://doi.org/10.1161/01.RES.0000204553.32549.a7

    Article  PubMed  CAS  Google Scholar 

  2. Ren B (2015) Endothelial cells: a key player in angiogenesis and lymphangiogenesis. MOJ Cell Sci Rep. https://doi.org/10.15406/mojcsr.2015.02.00015

    Article  Google Scholar 

  3. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219. https://doi.org/10.1016/j.devcel.2013.06.017

    Article  PubMed  CAS  Google Scholar 

  4. Ren B, Ramanchandran R, Silverstein R (2017) Protein kinase D1-CD36 signaling axis promotes arteriolar differentiation. J Investig Med 65:807–879. https://doi.org/10.1136/jim-2017-000448

    Article  Google Scholar 

  5. Marcelo KL, Goldie LC, Hirschi KK (2013) Regulation of endothelial cell differentiation and specification. Circ Res 112:1272–1287. https://doi.org/10.1161/CIRCRESAHA.113.300506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395. https://doi.org/10.1038/74651

    Article  PubMed  CAS  Google Scholar 

  7. Ren B, Deng Y, Mukhopadhyay A, Lanahan AA, Zhuang ZW, Moodie KL, Mulligan-Kehoe MJ, Byzova TV, Peterson RT, Simons M (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Investig 120:1217–1228. https://doi.org/10.1172/JCI39837

    Article  PubMed  CAS  Google Scholar 

  8. Ren B, Hale J, Srikanthan S, Silverstein RL (2011) Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 117:6036–6045. https://doi.org/10.1182/blood-2010-12-326017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ren B, Best B, Ramakrishnan DP, Walcott BP, Storz P, Silverstein RL (2016) LPA/PKD-1-FoxO1 signaling axis mediates endothelial cell CD36 transcriptional repression and proangiogenic and proarteriogenic reprogramming. Arterioscler Thromb Vasc Biol 36:1197–1208. https://doi.org/10.1161/ATVBAHA.116.307421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dong L, Yuan Y, Opansky C, Chen Y, Aguilera-Barrantes I, Wu S, Yuan R, Cao Q, Cheng YC, Sahoo D, Silverstein RL, Ren B (2017) Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget 8:22550–22562. https://doi.org/10.18632/oncotarget.15123

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34:775–787

    Article  PubMed  CAS  Google Scholar 

  12. Hong CC, Kume T, Peterson RT (2008) Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification. Circ Res 103:573–579. https://doi.org/10.1161/CIRCRESAHA.108.180745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Moran P, Opansky C, Weihrauch D, Yuan R, Jones DW, Ramchandran R, Ren B (2017) Abstract 14944: transcriptional reprogramming of endothelial cells for arteriolar differentiation by small chemical molecule via protein kinase D1 signaling pathway. Circulation 136:A14944-A14944

    Google Scholar 

  14. Candal FJ, Rafii S, Parker JT, Ades EW, Ferris B, Nachman RL, Kellar KL (1996) BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvasc Res 52:221–234. https://doi.org/10.1006/mvre.1996.0060

    Article  PubMed  CAS  Google Scholar 

  15. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  16. Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D (2000) Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther 2:404–414. https://doi.org/10.1006/mthe.2000.0141

    Article  PubMed  CAS  Google Scholar 

  17. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78. https://doi.org/10.1038/nbt.1717

    Article  PubMed  CAS  Google Scholar 

  18. Burghoff S, Gong X, Viethen C, Jacoby C, Flogel U, Bongardt S, Schorr A, Hippe A, Homey B, Schrader J (2014) Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer 14:898. https://doi.org/10.1186/1471-2407-14-898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365. https://doi.org/10.1038/nmeth1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hermans K, Claes F, Vandevelde W, Zheng W, Geudens I, Orsenigo F, De Smet F, Gjini E, Anthonis K, Ren B, Kerjaschki D, Autiero M, Ny A, Simons M, Dewerchin M, Schulte-Merker S, Dejana E, Alitalo K, Carmeliet P (2010) Role of synectin in lymphatic development in zebrafish and frogs. Blood 116:3356–3366. https://doi.org/10.1182/blood-2009-11-254557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ren B, Song K, Parangi S, Jin T, Ye M, Humphreys R, Duquette M, Zhang X, Benhaga N, Lawler J, Khosravi-Far R (2009) A double hit to kill tumor and endothelial cells by TRAIL and antiangiogenic 3TSR. Cancer Res 69:3856–3865. https://doi.org/10.1158/0008-5472.CAN-08-2940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Overwijk WW, Restifo NP (2001) B16 as a mouse model for human melanoma. Curr Protoc Immunol. https://doi.org/10.1002/0471142735.im2001s39

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4:91–102

    Article  PubMed  CAS  Google Scholar 

  24. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780. https://doi.org/10.1038/nature05571

    Article  PubMed  CAS  Google Scholar 

  25. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104:3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  PubMed  CAS  Google Scholar 

  26. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. https://doi.org/10.1038/ncb3555

    Article  PubMed Central  PubMed  Google Scholar 

  27. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18:2474–2478. https://doi.org/10.1101/gad.1239004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  PubMed  CAS  Google Scholar 

  29. Ren B (2016) Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis. Front Cell Dev Biol 4:37. https://doi.org/10.3389/fcell.2016.00037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Swerlick RA, Lee KH, Wick TM, Lawley TJ (1992) Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 148:78–83

    PubMed  CAS  Google Scholar 

  31. Ren B, Yee KO, Lawler J, Khosravi-Far R (2006) Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 1765:178–188. https://doi.org/10.1016/j.bbcan.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  32. Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Investig 108:785–791. https://doi.org/10.1172/JCI14006

    Article  PubMed  CAS  Google Scholar 

  33. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 99:2034–2040

    Article  PubMed  CAS  Google Scholar 

  34. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Hong CC, Peterson QP, Hong JY, Peterson RT (2006) Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol 16:1366–1372. https://doi.org/10.1016/j.cub.2006.05.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599. https://doi.org/10.1038/nbt963

    Article  PubMed  CAS  Google Scholar 

  37. Wong C, Jin ZG (2005) Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem 280:33262–33269. https://doi.org/10.1074/jbc.M503198200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wood BM, Bossuyt J (2017) Emergency spatiotemporal shift: the response of protein kinase D to stress signals in the cardiovascular system. Front Pharmacol 8:9. https://doi.org/10.3389/fphar.2017.00009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qin L, Zeng H, Zhao D (2006) Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cgamma phosphorylation. J Biol Chem 281:32550–32558. https://doi.org/10.1074/jbc.M604853200

    Article  PubMed  CAS  Google Scholar 

  40. Ren B, Best B, Weihrauch D, Jones DW, Dong L, Opansky C, Yuan R, Pritchard KA, Silverstein R (2016) LPA/PKD-1-FoxO1-CD36 signaling axis regulates capillary arterialization in ischemic conditions. Circulation 134:A15673–A15673

    Google Scholar 

  41. Opansky C, Best B, Yuan R, Cao Q, Ren B (2016) Abstract 14437: protein kinase D1 signaling is the key to arterial differentiation of vascular endothelial cells. Circulation 134:A14437–A14437

    Google Scholar 

  42. Wythe JD, Dang LT, Devine WP, Boudreau E, Artap ST, He D, Schachterle W, Stainier DY, Oettgen P, Black BL, Bruneau BG, Fish JE (2013) ETS factors regulate Vegf-dependent arterial specification. Dev Cell 26:45–58. https://doi.org/10.1016/j.devcel.2013.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wong BW, Marsch E, Treps L, Baes M, Carmeliet P (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. https://doi.org/10.15252/embj.201696150

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xie Y, Fan Y, Xu Q (2016) Vascular regeneration by stem/progenitor cells. Arterioscler Thromb Vasc Biol 36:e33-40. https://doi.org/10.1161/ATVBAHA.116.307303

    Article  PubMed  CAS  Google Scholar 

  45. Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol 10:387–396. https://doi.org/10.1038/nrcardio.2013.70

    Article  PubMed  CAS  Google Scholar 

  46. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625. https://doi.org/10.1038/nrm.2016.87

    Article  PubMed  CAS  Google Scholar 

  47. Lipton BH, Bensch KG, Karasek MA (1991) Microvessel endothelial cell transdifferentiation: phenotypic characterization. Differentiation 46:117–133

    Article  PubMed  CAS  Google Scholar 

  48. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA 112:14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the American Heart Association (13SDG14800019, B. Ren), the Ann’s Hope Foundation (FP00011709, B. Ren), an Institutional Research Grant (# 86-004-26) from American Cancer Society (B. Ren), a Career Development Award from the Central Society of Clinical and Translational Research (B. Ren), and the National Institute of Health (NHLBI R01 HL136423, B. Ren). P. Moran is supported by an Institutional Research Training Grant from NHLBI (5T35 HL072483-34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Supplementary material 2 (PDF 2302 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Best, B., Moran, P. & Ren, B. VEGF/PKD-1 signaling mediates arteriogenic gene expression and angiogenic responses in reversible human microvascular endothelial cells with extended lifespan. Mol Cell Biochem 446, 199–207 (2018). https://doi.org/10.1007/s11010-018-3286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3286-z

Keywords

Navigation