Skip to main content
Log in

Coordinated targeting of MMP-2/MMP-9 by miR-296-3p/FOXCUT exerts tumor-suppressing effects in choroidal malignant melanoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Choroidal melanoma is the most common intraocular tumor in adults, and overexpression of matrix metalloproteinase-2 or matrix metalloproteinase-9 (MMP-2/MMP-9) is associated with angiogenesis and tumor metastasis of the choroidal malignant melanoma (CMM). This study aims to investigate the functions and mechanisms of microRNA or long non-coding RNA-targeted MMP-2/MMP-9 in CMM. We demonstrated that expressions of MMP-2/MMP-9 were increased in CMM tissues and C918 cells in comparison with normal choroidal melanocytes. Bio-informatics prediction and our experiments validated that MMP-2 and MMP-9 were simultaneously targeted by miR-296-3p and FOXC1 promoter upstream transcript (FOXCUT); the latter two exerted tumor-suppressing effects on CMM cells by inhibiting cell proliferation, cell cycle progression, migration, invasion, and induction of cell apoptosis. Furthermore, significant downregulations of miR-296-3p and FOXCUT were found in C918 cells compared with choroidal melanocytes from the unaffected eyes, and a positive correlation was observed between their levels in three cases of eye malignant melanomas. Our data indicated that MMP-2/MMP-9 was coordinately targeted by two non-coding RNAs, miR-296-3p and FOXCUT, which were decreased, and tumor-suppressing factors in CMM. Further study will show the possibility of developing them as therapeutic candidates for CMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MMP-2/MMP-9:

Matrix metalloproteinase-2/matrix metalloproteinase-9

CMM:

Choroid malignant melanoma

miRNA:

MicroRNA

lncRNA:

Long non-coding RNA

FOXCUT:

FOXC1 promoter upstream transcript

ECM:

Extracellular matrix

ncRNAs:

Non-coding RNAs

ISH:

In situ hybridization

IHC:

Immunohistochemistry

FCS:

Fetal calf serum

FBS:

Fetal bovine serum

NC mimic:

A negative control sequence

RT:

Reverse transcription

qPCR:

Quantitative PCR

RAP:

RNA antisense purification

CCK-8:

Cell Counting Kit-8

FCM:

Flow cytometry assay

SD:

Standard deviation

References

  1. Shukla S, Acharya S, Dulani M (2015) Choroid melanoma—a rare case report. J Clin Diagn Res 9:ED09–E10

    PubMed  PubMed Central  Google Scholar 

  2. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  3. Damato B, Eleuteri A, Taktak AF, Coupland SE (2011) Estimating prognosis for survival after treatment of choroidal melanoma. Prog Retin Eye Res 30:285–295

    Article  PubMed  Google Scholar 

  4. Aubin JM, Rekman J, Vandenbroucke-Menu F, Lapointe R, Fairfull-Smith RJ, Mimeault R, Balaa FK, Martel G (2013) Systematic review and meta-analysis of liver resection for metastatic melanoma. Br J Surg 100:1138–1147

    Article  PubMed  Google Scholar 

  5. Kujala E, Mäkitie T, Kivelä T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Investig Ophthalmol Vis Sci 44:4651–4659

    Article  Google Scholar 

  6. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17:868

    Article  PubMed Central  CAS  Google Scholar 

  8. Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ (2000) Matrix metalloproteinases in human melanoma. J Investig Dermatol 115:337–344

    Article  PubMed  CAS  Google Scholar 

  9. Zhong X, Zhang D, Xiong M, Zhang L (2016) Noncoding RNA for cancer gene therapy. Recent Results Cancer Res 209:51–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ling H, Girnita L, Buda O, Calin GA (2017) Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med 55:705–714

    Article  PubMed  CAS  Google Scholar 

  11. Reichstein D (2017) New concepts in the molecular understanding of uveal melanoma. Curr Opin Ophthalmol 2017;28:219–227

    Article  PubMed  Google Scholar 

  12. Fattore L, Costantini S, Malpicci D, Ruggiero CF, Ascierto PA, Croce CM, Mancini R, Ciliberto G (2017) MicroRNAs in melanoma development and resistance to target therapy. Oncotarget 8:22262–22278

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wozniak M, Mielczarek A, Czyz M (2016) miRNAs in melanoma: tumor suppressors and oncogenes with prognostic potential. Curr Med Chem 23:3136–3153

    Article  PubMed  CAS  Google Scholar 

  14. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  PubMed  CAS  Google Scholar 

  15. Kwok ZH, Tay Y (2017) Long noncoding RNAs: lincs between human health and disease. Biochem Soc Trans 45:805–812

    Article  PubMed  CAS  Google Scholar 

  16. Rao AKDM., Rajkumar T, Mani S (2017) Perspectives of long non-coding RNAs in cancer. Mol Biol Rep 44:203–218

    Article  PubMed  CAS  Google Scholar 

  17. Chi V, Chandy KG (2007) Immunohistochemistry: paraffin sections using the Vectastain ABC kit from vector labs. J Vis Exp 8:308

    Google Scholar 

  18. Hu DN, McCormick SA, Ritch R, Pelton-Henrion K (1993) Studies of human uveal melanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes. Investig Ophthalmol Vis Sci 34:2210–2219

    CAS  Google Scholar 

  19. Wu ZY, Lien JC, Huang YP, Liao CL, Lin JJ, Fan MJ, Ko YC, Hsiao YP, Lu HF, Chung JG (2016) Casticin inhibits A375.S2 human melanoma cell migration/invasion through downregulating NF-κB and matrix metalloproteinase-2 and -1. Molecules 21:384

    Article  PubMed  CAS  Google Scholar 

  20. Wu Z, Li M, Zheng W, Hu Q, Cheng Z, Guo F (2017) Silencing of both ATF4 and PERK inhibits cell cycle progression and promotes the apoptosis of differentiating chondrocytes. Int J Mol Med 40:101–111

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Chen Q, Yan J, Wang Y, Zhu C, Chen C, Zhao X, Xu M, Sun Q, Deng R et al (2013) MiRNA-296–3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 4:e928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu J, Shen L, Yao J, Li Y, Wang Y, Chen H, Geng P (2015) Forkhead box C1 promoter upstream transcript, a novel long non-coding RNA, regulates proliferation and migration in basal-like breast cancer. Mol Med Rep 11:3155–3159

    Article  PubMed  CAS  Google Scholar 

  23. Pan F, Yao J, Chen Y, Zhou C, Geng P, Mao H, Fang X (2014) A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:2838–2849

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Kong XP, Yao J, Luo W, Feng FK, Ma JT, Ren YP, Wang DL, Bu RF (2014) The expression and functional role of a FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol Cell Biochem 394:177–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Xu YZ, Chen FF, Zhang Y, Zhao QF, Guan XL, Wang HY, Li A, Lv X, Song SS, Zhou Y et al (2017) The long noncoding RNA FOXCUT promotes proliferation and migration by targeting FOXC1 in nasopharyngeal carcinoma. Tumour Biol 39:1010428317706054

    PubMed  Google Scholar 

  26. Xue B, He L (2014) An expanding universe of the non-coding genome in cancer biology. Carcinogenesis 35:1209–1216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

X.W., Y.H., and J.C. wrote the paper and conceived and designed the experiments. Y.Z. analyzed the data. X.W. and Y.H. prepared the manuscript and revised it. L.C. is responsible for the guarantee of integrity of the entire study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, Y., Cui, J. et al. Coordinated targeting of MMP-2/MMP-9 by miR-296-3p/FOXCUT exerts tumor-suppressing effects in choroidal malignant melanoma. Mol Cell Biochem 445, 25–33 (2018). https://doi.org/10.1007/s11010-017-3248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3248-x

Keywords

Navigation