Skip to main content
Log in

Epigallocatechin gallate protects against homocysteine-induced vascular smooth muscle cell proliferation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Epigallocatechin gallate (EGCG), a bioactive ingredient of green tea, plays a protective role in the cardiovascular system. Homocysteine (Hcy) is a major risk factor for chronic kidney disease and cardiovascular disease. The present study aimed to investigate the role of EGCG in Hcy-induced proliferation of vascular smooth muscle cells (VSMCs) and its underlying mechanism. We also explored the roles of rennin-angiotensin system (RAS), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) in this process. Human aortic smooth muscle cells (HASMCs) were treated with different drugs for different periods. The proliferation rate of HASMCs was detected using the CCK-8 and BrdU labeling assays. The Western blot assay was used to determine the expression levels of angiotensin II type 1 receptor (AT-1R), ERK1/2, and p38 MAPK. Compared with the control group, the HASMCs treated with Hcy at different doses (100, 200, 500, and 1000 µM) showed significantly increased proliferation. Hcy increased the expression of AT-1R, whereas EGCG decreased the protein expression of AT-1R. Furthermore, we found that Hcy-induced expression of p-ERK1/2 and p-p38MAPK was dependent on AT-1R. Compared with Hcy (500 µM)-treated cells, EGCG (20 µM)-treated cells showed decreased proliferation as well as expression of AT-1R, p-ERK1/2, and p-p38MAPK. In addition, HASMC proliferation was suppressed by the addition of an AT-1R blocker (olmesartan), an ERK1/2 inhibitor (PD98059), and a p38MAPK inhibitor (SB202190). EGCG can inhibit AT-1R and affect ERK1/2 and p38MAPK signaling pathways, resulting in the decrease of VSMC proliferation induced by Hcy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stauffer ME, Fan T (2014) Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 9:e84943. doi:10.1371/journal.pone.0084943

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, Chen N, Zhang JE, Hu Z, Liu F, Hong D, Ma L, Liu H, Zhou X, Chen J, Pan L, Chen W, Wang W, Li X, Wang H (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822. doi:10.1016/s0140-6736(12)60033-6

    Article  PubMed  Google Scholar 

  3. Townsend RR, Taler SJ (2015) Management of hypertension in chronic kidney disease. Nat Rev Nephrol 11:555–563. doi:10.1038/nrneph.2015.114

    Article  PubMed  Google Scholar 

  4. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  5. Lake AC, Bialik A, Walsh K, Castellot JJ (2003) CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am J Pathol 162:219–231. doi:10.1016/s0002-9440(10)63813-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83. doi:10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L (2012) Angiotensin II increases CTGF expression via MAPKs/TGF-beta1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 318:2105–2115. doi:10.1016/j.yexcr.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  8. Doronzo G, Russo I, Del MP, Viretto M, Mattiello L, Trovati M, Anfossi G (2010) Role of NMDA receptor in homocysteine-induced activation of mitogen-activated protein kinase and phosphatidyl inositol 3-kinase pathways in cultured human vascular smooth muscle cells. Thromb Res 125:e23–e32. doi:10.1016/j.thromres.2009.08.015

    Article  PubMed  Google Scholar 

  9. Ferrario CM (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst 7:3–14. doi:10.3317/jraas.2006.003

    Article  CAS  PubMed  Google Scholar 

  10. Bourmoum M, Charles R, Claing A (2016) The GTPase ARF6 controls ROS production to mediate angiotensin II-induced vascular smooth muscle cell proliferation. PLoS ONE 11:e148097. doi:10.1371/journal.pone.0148097

    Article  Google Scholar 

  11. Kendrick J, Chonchol MB (2008) Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat Clin Pract Nephrol 4:672–681. doi:10.1038/ncpneph0954

    Article  PubMed  Google Scholar 

  12. Jakovljevic B, Gasic B, Kovacevic P, Rajkovaca Z, Kovacevic T (2015) Homocystein as a risk factor for developing complications in chronic renal failure. Mater Sociomed 27:95–98. doi:10.5455/msm.2015.27.95-98

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613

    Article  CAS  PubMed  Google Scholar 

  14. Buccianti G, Baragetti I, Bamonti F, Furiani S, Dorighet V, Patrosso C (2004) Plasma homocysteine levels and cardiovascular mortality in patients with end-stage renal disease. J Nephrol 17:405–410

    CAS  PubMed  Google Scholar 

  15. Heinz J, Kropf S, Luley C, Dierkes J (2009) Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am J Kidney Dis 54:478–489. doi:10.1053/j.ajkd.2009.01.266

    Article  CAS  PubMed  Google Scholar 

  16. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee ME (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91:6369–6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang L, Mamotte CD, Van Bockxmeer FM, Taylor RR (1998) The effect of homocysteine on DNA synthesis in cultured human vascular smooth muscle. Atherosclerosis 136:169–173

    Article  CAS  PubMed  Google Scholar 

  18. Kartal ON, Taha S, Azzi A (2005) Homocysteine induces DNA synthesis and proliferation of vascular smooth muscle cells by interfering with MAPK kinase pathway. BioFactors 24:193–199

    Article  Google Scholar 

  19. Chiang JK, Sung ML, Yu HR, Chang HI, Kuo HC, Tsai TC, Yen CK, Chen CN (2011) Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression. J Cell Physiol 226:1017–1026. doi:10.1002/jcp.22415

    Article  CAS  PubMed  Google Scholar 

  20. Chowdhury A, Sarkar J, Chakraborti T, Pramanik PK, Chakraborti S (2016) Protective role of epigallocatechin-3-gallate in health and disease: a perspective. Biomed Pharmacother 78:50–59. doi:10.1016/j.biopha.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  21. Young W, Hotovec RL, Romero AG (1967) Tea and atherosclerosis. Nature 216:1015–1016

    Article  CAS  PubMed  Google Scholar 

  22. Tijburg LB, Mattern T, Folts JD, Weisgerber UM, Katan MB (1997) Tea flavonoids and cardiovascular disease: a review. Crit Rev Food Sci Nutr 37:771–785. doi:10.1080/10408399709527802

    Article  CAS  PubMed  Google Scholar 

  23. Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A, Witteman JC (2002) Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75:880–886

    Article  CAS  PubMed  Google Scholar 

  24. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296:1255–1265. doi:10.1001/jama.296.10.1255

    Article  CAS  PubMed  Google Scholar 

  25. Wolfram S (2007) Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26:373S–388S

    Article  CAS  PubMed  Google Scholar 

  26. Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5:3779–3827. doi:10.3390/nu5103779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai Y, Kurita-Ochiai T, Hashizume T, Yamamoto M (2013) Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis. Pathog Dis 67:76–83. doi:10.1111/2049-632X.12001

    Article  CAS  PubMed  Google Scholar 

  28. Zeng X, Tan X (2015) Epigallocatechin-3-gallate and zinc provide anti-apoptotic protection against hypoxia/reoxygenation injury in H9c2 rat cardiac myoblast cells. Mol Med Rep 12:1850–1856. doi:10.3892/mmr.2015.3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stangl V, Dreger H, Stangl K, Lorenz M (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73:348–358. doi:10.1016/j.cardiores.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Han Y, Sun H, Chen C, He D, Guo J, Yu C, Jiang B, Zhou L, Zeng C (2011) (−)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings. J Agric Food Chem 59:11483–11490. doi:10.1021/jf2024819

    Article  CAS  PubMed  Google Scholar 

  31. Shu Z, Yu M, Zeng G, Zhang X, Wu L, Tan X (2014) Epigallocatechin-3-gallate inhibits proliferation of human aortic smooth muscle cells via up-regulating expression of mitofusin 2. Eur J Cell Biol 93:137–144. doi:10.1016/j.ejcb.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Liu PL, Liu JT, Kuo HF, Chong IW, Hsieh CC (2014) Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1beta via heme oxygenase-1. Mediat Inflamm 2014:523684. doi:10.1155/2014/523684

    Google Scholar 

  33. Xu J, Carretero OA, Liao TD, Peng H, Shesely EG, Xu J, Liu TS, Yang JJ, Reudelhuber TL, Yang XP (2010) Local angiotensin II aggravates cardiac remodeling in hypertension. Am J Physiol Heart Circ Physiol 299:H1328–H1338. doi:10.1152/ajpheart.00538.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bader M, Peters J, Baltatu O, Muller DN, Luft FC, Ganten D (2001) Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med (Berl) 79:76–102

    Article  CAS  Google Scholar 

  35. Moshal KS, Sen U, Tyagi N, Henderson B, Steed M, Ovechkin AV, Tyagi SC (2006) Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. Am J Physiol Cell Physiol 290:C883–C891. doi:10.1152/ajpcell.00359.2005

    Article  CAS  PubMed  Google Scholar 

  36. Zou T, Yang W, Hou Z, Yang J (2010) Homocysteine enhances cell proliferation in vascular smooth muscle cells: role of p38 MAPK and p47phox. Acta Biochim Biophys Sin (Shanghai) 42:908–915. doi:10.1093/abbs/gmg102 

    Article  CAS  Google Scholar 

  37. Zheng Y, Song HJ, Kim CH, Kim HS, Kim EG, Sachinidis A, Ahn HY (2004) Inhibitory effect of epigallocatechin 3-O-gallate on vascular smooth muscle cell hypertrophy induced by angiotensin II. J Cardiovasc Pharmacol 43:200–208

    Article  CAS  PubMed  Google Scholar 

  38. Won SM, Park YH, Kim HJ, Park KM, Lee WJ (2006) Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Exp Mol Med 38:525–534. doi:10.1038/emm.2006.62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Outstanding Young Training Program of the Pudong Health Bureau of Shanghai (PWRq2014-05), the Key Specialized Construction Project in Medicine of Shanghai (ZK2015A15), Shanghai science and technology commission (15ZR1437400), and the Outstanding Leaders Training Program of the Pudong Health Bureau of Shanghai (PWRI2012-05). All authors have approved the final version of the manuscript and have agreed to submit it to this journal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li Guo or Hui Min Jin.

Ethics declarations

Conflict of interest

None of the authors had any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X.L., Yang, X.H., Gu, Y.H. et al. Epigallocatechin gallate protects against homocysteine-induced vascular smooth muscle cell proliferation. Mol Cell Biochem 439, 131–140 (2018). https://doi.org/10.1007/s11010-017-3142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3142-6

Keywords

Navigation