Skip to main content
Log in

AMPK/NF-κB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 Inflammation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial inflammation and monocyte plays an essential role in the initiation and progression of atherosclerosis. Ghrelin is beneficial for atherosclerosis progression. However, the detailed and precise molecular mechanisms of how ghrelin regulates endothelial inflammation are not clear. In this study, we investigated the regulation mechanism of ghrelin on TNF-α-activated endothelial inflammation and monocyte adhesion. It was found that TNF-α-induced monocyte adhesion on HUVEC was significantly attenuated by ghrelin. Furthermore, we found that ghrelin effectively suppressed TNF-α-induced inflammatory factors’ (including ICAM-1, VCAM-1, MCP-1, and IL-1β) expression through inhibiting AMPK phosphorylation and p65 expression both in HUVEC and THP-1. This phenomenon was further demonstrated by using AMPK agonist AICAR and inhibitor compound C, respectively. Our findings suggest that ghrelin may mediate TNF-α-induced endothelial inflammation and monocyte adhesion, in part via AMPK/NF-κB signaling pathway. These novel anti-inflammatory and immunoregulatory actions of ghrelin may play a certain role in understanding the formation and development of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng XX, Zhou T, Wang XA, Tong XH, Ding JW (2015) Histone deacetylases and atherosclerosis. Atherosclerosis 240(2):355–366. doi:10.1016/j.atherosclerosis.2014.12.048

    Article  CAS  PubMed  Google Scholar 

  2. Gimbrone MA, Garcia-Cardena G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118(4):620–636. doi:10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. doi:10.1038/nri2171

    Article  CAS  PubMed  Google Scholar 

  4. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18(5):842–851

    Article  CAS  PubMed  Google Scholar 

  5. Gahete MD, Rincon-Fernandez D, Villa-Osaba A, Hormaechea-Agulla D, Ibanez-Costa A, Martinez-Fuentes AJ, Gracia-Navarro F, Castano JP, Luque RM (2014) Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol 220(1):R1–24. doi:10.1530/JOE-13-0391

    Article  CAS  PubMed  Google Scholar 

  6. Hattori N (2009) Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm IGF Res 19(3):187–197. doi:10.1016/j.ghir.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Baatar D, Patel K, Taub DD (2011) The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 340(1):44–58. doi:10.1016/j.mce.2011.04.019

    Article  CAS  PubMed  Google Scholar 

  8. Zhan M, Yuan F, Liu H, Chen H, Qiu X, Fang W (2008) Inhibition of proliferation and apoptosis of vascular smooth muscle cells by ghrelin. Acta Biochim Biophys Sin (Shanghai) 40(9):769–776

    Article  Google Scholar 

  9. Deng B, Fang F, Yang T, Yu Z, Zhang B, Xie X (2015) Ghrelin inhibits AngII-induced expression of TNF-alpha, IL-8, MCP-1 in human umbilical vein endothelial cells. Int J Clin Exp Med 8(1):579–588

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7(8):512–518. doi:10.1038/nchembio.610

    Article  CAS  PubMed  Google Scholar 

  11. Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W, Wang L, He F, Xue Y (2014) The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol 13:32. doi:10.1186/1475-2840-13-32

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fullerton MD, Steinberg GR, Schertzer JD (2013) Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol 366(2):224–234. doi:10.1016/j.mce.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107(3):255–264. doi:10.1172/JCI10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia YF, Liu LP, Zhong CP, Geng JG (2001) NF-kappaB activation for constitutive expression of VCAM-1 and ICAM-1 on B lymphocytes and plasma cells. Biochem Biophys Res Commun 289(4):851–856. doi:10.1006/bbrc.2001.6067

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, Kong J, Li YC (2007) 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int 72(2):193–201. doi:10.1038/sj.ki.5002296

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhang JJ, Dai W, Lei KY, Pike JW (1997) Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation. J Immunol 159(2):534–537

    CAS  PubMed  Google Scholar 

  17. Jung CH, Lee MJ, Kang YM, Lee YL, Seol SM, Yoon HK, Kang SW, Lee WJ, Park JY (2016) C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells. Mol Cell Endocrinol 419:235–243. doi:10.1016/j.mce.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  18. Zabielska MA, Borkowski T, Slominska EM, Smolenski RT (2015) Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology. Pharmacol Rep 67(4):682–688. doi:10.1016/j.pharep.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Zhang Y, Hong K, Luo F, Gu Q, Lu N, Bai A (2014) AMPK inhibition blocks ROS-NFkappaB signaling and attenuates endotoxemia-induced liver injury. PLoS ONE 9(1):e86881. doi:10.1371/journal.pone.0086881

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tesauro M, Schinzari F, Iantorno M, Rizza S, Melina D, Lauro D, Cardillo C (2005) Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 112(19):2986–2992. doi:10.1161/CIRCULATIONAHA.105.553883

    CAS  PubMed  Google Scholar 

  21. Lilleness BM, Frishman WH (2016) Ghrelin and the cardiovascular system. Cardiol Rev. doi:10.1097/CRD.0000000000000113

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Nature Science Foundation of China (No. 81370400), Basic research foundation on Shanghai Institute of Science and Technology (10JC1405600), Shanghai Jiaotong University Grants for Interdisciplinary Research on Medicine and Engineering (YG-2014MS74), Research Fund for the Scientific and Technical Project of Shanghai Chest Hospital (2014YZDH20300), and the National Nature Science Foundation of China (No. 81370361).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyi Fang or Xinkai Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2017_3094_MOESM1_ESM.tif

Supplementary material 1 Supplementary Fig. 1 Ghrelin attenuated TNF-α-induced inflammatory factors expression in HUVEC. (A) HUVEC was stimulated with ghrelin (1000 ng/mL or 3000 ng/mL) for 6 hours. MCP-1 mRNA expressions was analyzed by real-time PCR. (B) HUVEC was stimulated with ghrelin (1000 ng/mL or 3000 ng/mL) for 6 hours. IL-1β mRNA expressions was analyzed by real-time PCR. (TIFF 381 kb)

11010_2017_3094_MOESM2_ESM.tif

Supplementary material 2 Supplementary Fig. 2 Ghrelin attenuated TNF-α-induced inflammatory factors expression in THP-1. (A) THP-1 was stimulated with ghrelin (1000 ng/mL or 3000 ng/mL) for 6 hours. IL-8 mRNA expressions was analyzed by real-time PCR. (B) THP-1 was stimulated with ghrelin (1000 ng/mL or 3000 ng/mL) for 6 hours. MCP-1 mRNA expressions was analyzed by real-time PCR. (TIFF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, S., Pan, Z. et al. AMPK/NF-κB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 Inflammation. Mol Cell Biochem 437, 45–53 (2018). https://doi.org/10.1007/s11010-017-3094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3094-x

Keywords

Navigation