Skip to main content

Advertisement

Log in

Fingerprint of long non-coding RNA regulated by cyclic mechanical stretch in human aortic smooth muscle cells: implications for hypertension

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that long non-coding RNAs (lncRNAs) represent a cellular hub coordinating various cellular processes that are critical in health and disease. Mechanical stress triggers changes in vascular smooth muscle cells (VSMCs) that in turn contribute to pathophysiological changes within the vasculature. We sought to evaluate the role that lncRNAs play in mechanical stretch-induced alterations of human aortic smooth muscle cells (HASMCs). RNA (lncRNA and mRNA) samples isolated from HASMCs that had been subjected to 10 or 20% elongation (1 Hz) for 24 h were profiled with the Arraystar Human LncRNA Microarray V3.0. LncRNA expression was quantified in parallel via qRT-PCR. Of the 30,586 human lncRNAs screened, 580 were differentially expressed (DE, P < 0.05) in stretched HASMCs. Amongst the 26,109 protein-coding transcripts evaluated, 25 of those DE were associated with 25 of the aforementioned DE lncRNAs (P < 0.05). Subsequent Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DE mRNAs were largely associated with the tumor necrosis factor signaling pathway and inflammation. Gene Ontology analysis indicated that the DE mRNAs were associated with cell differentiation, stress response, and response to external stimuli. We describe the first transcriptome profile of stretch-induced changes in HASMCs and provide novel insights into the regulatory switches that may be fundamental in governing aberrant VSMC remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AVIC:

Aortic valve interstitial cell

CAD:

Coronary artery disease

cDNA:

Complementary DNA

CHRF:

Cardiac hypertrophy-related factor

DE:

Differentially expressed

EC:

Endothelial cell

ECM:

Extracellular matrix

FBN-1:

Fibrillin-1

FBSS:

Fetal bovine serum

GO:

Gene ontology

HASMC:

Human aortic smooth muscle cell

KEGG:

Kyoto Encyclopedia of Genes and Genomes

lncRNA:

Long non-coding RNA

Mhrt:

Myosin heavy chain-associated RNA transcripts

ncRNA:

Non-coding RNA

PAD:

Peripheral artery disease

qRT-PCR:

Quantitative real-time PCR

RA:

Rheumatoid arthritis

TNF:

Tumor necrosis factor

VSMC:

Vascular smooth muscle cell

References

  1. Chistiakov DA, Orekhov AN, Bobryshev YV (2015) Vascular smooth muscle cell in atherosclerosis. Acta Physiol 214:33–50. doi:10.1111/apha.12466 (Oxf)

    Article  CAS  Google Scholar 

  2. Raghavan ML, Webster MW, Vorp DA (1996) Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24:573–582

    Article  CAS  PubMed  Google Scholar 

  3. Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH (2012) The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res 49:463–478. doi:10.1159/000339151

    Article  CAS  PubMed  Google Scholar 

  4. Gillis E, Van Laer L, Loeys BL (2013) Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility. Circ Res 113:327–340. doi:10.1161/CIRCRESAHA.113.300675

    Article  CAS  PubMed  Google Scholar 

  5. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62:347–504

    CAS  PubMed  Google Scholar 

  6. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10:53–62. doi:10.1038/nrm2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lemarie CA, Tharaux PL, Lehoux S (2010) Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol 48:433–439. doi:10.1016/j.yjmcc.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  8. Consortium EP (2004) The ENCODE (ENCyclopedia of DNA elements) project. Science 306:636–640. doi:10.1126/science.1105136

    Article  Google Scholar 

  9. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi:10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  10. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:925–933. doi:10.4161/rna.24604

    PubMed  Google Scholar 

  11. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esguerra JL, Eliasson L (2014) Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 5:209. doi:10.3389/fgene.2014.00209

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560. doi:10.1038/nature06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kornfeld JW, Bruning JC (2014) Regulation of metabolism by long, non-coding RNAs. Front Genet 5:57. doi:10.3389/fgene.2014.00057

    Article  PubMed  PubMed Central  Google Scholar 

  15. Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30:620–627. doi:10.1161/ATVBAHA.109.196832

    Article  CAS  PubMed  Google Scholar 

  16. Tsai PC, Liao YC, Lin TH, Hsi E, Yang YH, Juo SH (2012) Additive effect of ANRIL and BRAP polymorphisms on ankle-brachial index in a Taiwanese population. Circ J 76:446–452

    Article  CAS  PubMed  Google Scholar 

  17. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493. doi:10.1126/science.1142842

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. doi:10.1161/CIRCRESAHA.114.302476

    Article  CAS  PubMed  Google Scholar 

  19. Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien HC, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HS, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. doi:10.1038/nature13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67. doi:10.1038/nature09130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V (2014) The long non-coding HOTAIR is modulated by cyclic stretch and WNT/beta-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One 9:e96577. doi:10.1371/journal.pone.0096577

    Article  PubMed  PubMed Central  Google Scholar 

  22. Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750. doi:10.1161/CIRCRESAHA.116.302521

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Feng G, Wang Y, Yue Y, Zhao W (2014) Regulation of apoptosis by long non-coding RNA HIF1A-AS1 in VSMCs: implications for TAA pathogenesis. Int J Clin Exp Pathol 7:7643–7652

    PubMed  PubMed Central  Google Scholar 

  24. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Yang Q, Wang Z, Wei D (2014) Shear stress in atherosclerotic plaque determination. DNA Cell Biol 33:830–838. doi:10.1089/dna.2014.2480

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita O, Yoshimura K, Nagasawa A, Ueda K, Morikage N, Ikeda Y, Hamano K (2013) Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One 8:e79753. doi:10.1371/journal.pone.0079753

    Article  PubMed  PubMed Central  Google Scholar 

  27. Intengan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–587

    Article  CAS  PubMed  Google Scholar 

  28. Song J, Hu B, Qu H, Bi C, Huang X, Zhang M (2012) Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells. PLoS One 7:e47657. doi:10.1371/journal.pone.0047657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1alpha by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci 105:447–456. doi:10.1042/CS20030088 (Lond)

    Article  CAS  PubMed  Google Scholar 

  30. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289:L288–L289. doi:10.1152/ajplung.00417.2004

    Article  CAS  PubMed  Google Scholar 

  31. Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, Jiang ZL (2008) Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 94:1497–1507. doi:10.1529/biophysj.106.098574

    Article  CAS  PubMed  Google Scholar 

  32. Standley PR, Cammarata A, Nolan BP, Purgason CT, Stanley MA (2002) Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 283:H1907–H1914. doi:10.1152/ajpheart.01043.2001

    Article  CAS  PubMed  Google Scholar 

  33. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392. doi:10.1111/j.1365-2796.2006.01624.x

    Article  CAS  PubMed  Google Scholar 

  34. Haga JH, Li YS, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40:947–960. doi:10.1016/j.jbiomech.2006.04.011

    Article  PubMed  Google Scholar 

  35. Mantella LE, Quan A, Verma S (2015) Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc Cell 7:7. doi:10.1186/s13221-015-0032-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Butcher JT, Barrett BC, Nerem RM (2006) Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials 27:5252–5258. doi:10.1016/j.biomaterials.2006.05.040

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q, Geng B (2013) Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 8:e77938. doi:10.1371/journal.pone.0077938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. doi:10.1016/j.cell.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LeMaire SA, McDonald ML, Guo DC, Russell L, Miller CC 3rd, Johnson RJ, Bekheirnia MR, Franco LM, Nguyen M, Pyeritz RE, Bavaria JE, Devereux R, Maslen C, Holmes KW, Eagle K, Body SC, Seidman C, Seidman JG, Isselbacher EM, Bray M, Coselli JS, Estrera AL, Safi HJ, Belmont JW, Leal SM, Milewicz DM (2011) Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet 43:996–1000. doi:10.1038/ng.934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IM, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EH, Oostra BA, Wessels MW, Bertoli-Avella AM (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126. doi:10.1038/ng.744

    Article  PubMed  Google Scholar 

  41. Orlandi A, Ropraz P, Gabbiani G (1994) Proliferative activity and alpha-smooth muscle actin expression in cultured rat aortic smooth muscle cells are differently modulated by transforming growth factor-beta 1 and heparin. Exp Cell Res 214:528–536. doi:10.1006/excr.1994.1290

    Article  CAS  PubMed  Google Scholar 

  42. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273. doi:10.1016/j.tibs.2004.03.008

    Article  PubMed  Google Scholar 

  43. Yokote K, Kobayashi K, Saito Y (2006) The role of Smad3-dependent TGF-beta signal in vascular response to injury. Trends Cardiovasc Med 16:240–245. doi:10.1016/j.tcm.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  44. Lee SJ, Kim WJ, Moon SK (2009) TNF-alpha regulates vascular smooth muscle cell responses in genetic hypertension. Int Immunopharmacol 9:837–843. doi:10.1016/j.intimp.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  45. Cheng WP, Hung HF, Wang BW, Shyu KG (2008) The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovasc Res 77:551–559. doi:10.1093/cvr/cvm057

    Article  CAS  PubMed  Google Scholar 

  46. Cheng WP, Wang BW, Lo HM, Shyu KG (2015) Mechanical stretch induces apoptosis regulator TRB3 in cultured cardiomyocytes and volume-overloaded heart. PLoS One 10:e0123235. doi:10.1371/journal.pone.0123235

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hawwa RL, Hokenson MA, Wang Y, Huang Z, Sharma S, Sanchez-Esteban J (2011) IL-10 inhibits inflammatory cytokines released by fetal mouse lung fibroblasts exposed to mechanical stretch. Pediatr Pulmonol 46:640–649. doi:10.1002/ppul.21433

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liao KP (2016) Cardiovascular disease in patients with rheumatoid arthritis. Trends Cardiovasc Med. doi:10.1016/j.tcm.2016.07.006

    PubMed  Google Scholar 

  49. Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97:1392–1400

    Article  CAS  PubMed  Google Scholar 

  50. Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440. doi:10.1146/annurev.immunol.14.1.397

    Article  CAS  PubMed  Google Scholar 

  51. Nakayama H, Otsu K (2013) Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol Metab 24:546–553. doi:10.1016/j.tem.2013.06.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by in part by a grant from the Heart and Stroke Foundation of Canada to S. Verma. L. E. Mantella was the recipient of a Canada Graduate Scholarships-Master’s (CGS M) Award and a University of Toronto Fellowship. S. Verma is the Canada Research Chair in Atherosclerosis at the University of Toronto.

Author contributions

LEM, KKS, MA-O, RPJ, and SV designed the studies and the experiments. LEM, PS, CK, and AR conducted the experiments. LEM, AQ, and SM drafted the manuscript. LEM, KKS, NK, JEF, and SV analyzed and interpreted the data. All authors critically edited the manuscript, read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Verma.

Ethics declarations

Disclosures

The authors declared that they do not have anything to disclose regarding conflict of interest with respect to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantella, LE., Singh, K.K., Sandhu, P. et al. Fingerprint of long non-coding RNA regulated by cyclic mechanical stretch in human aortic smooth muscle cells: implications for hypertension. Mol Cell Biochem 435, 163–173 (2017). https://doi.org/10.1007/s11010-017-3065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3065-2

Keywords

Navigation