Skip to main content
Log in

TGF-β1-miR-200a-PTEN induces epithelial–mesenchymal transition and fibrosis of pancreatic stellate cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in pancreatic fibrosis is still poorly understood. In this study, we for the first time confirm that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and extracellular matrix formation. First, we find that TGF-β1 induces activation and extracellular matrix (ECM) formation in PSCs, and the effects are blocked by the inhibitor of PI3K (LY294002). Furthermore, we identify that miR-200a is down-regulated in TGF-β1-activated PSCs, and up-regulation of miR-200a inhibits PSCs activation induced by TGF-β1. Meanwhile, TGF-β1 inhibits the expression of the epithelial marker E-cadherin, and increases the expression of mesenchymal markers vimentin, and the expression of ECM proteins a-SMA and collagen I, while miR-200a mimic reversed the above effects in PSCs, indicating that miR-200a inhibits TGF-β1-induced activation and epithelial–mesenchymal transition (EMT). In addition, overexpression of miR-200a promotes the expression of PTEN and decreases the expression of matrix proteins and attenuates phosphorylation of Akt and mTOR. Taken together, our study uncovers a novel mechanism that miR-200a attenuates TGF-β1-induced pancreatic stellate cells activation and ECM formation through inhibiting PTEN /Akt/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Witt H, Apte MV, Keim V, Wilson JS (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132:1557–1573. doi:10.1053/j.gastro.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Madro A, Kurzepa J, Celinski K, Slomka M, Czechowska G, Kurzepa J, Kazmierak W, Buszewicz G, Ciesielka M, Madro R (2016) Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol 67:103–110

    CAS  PubMed  Google Scholar 

  3. Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J and Ren H (2016) Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. doi:10.3390/ijms17060799

    Google Scholar 

  4. Piao RL, Xiu M, Brigstock DR, Gao RP (2015) An immortalized rat pancreatic stellate cell line RP-2 as a new cell model for evaluating pancreatic fibrosis, inflammation and immunity. Hepatobiliary Pancreat Dis Int 14:651–659

    Article  PubMed  Google Scholar 

  5. Lawson JS, Syme HM, Wheeler-Jones CP, Elliott J (2016) Urinary active transforming growth factor beta in feline chronic kidney disease. Vet J 214:1–6. doi:10.1016/j.tvjl.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu M, Zeng X, Wang J, Fu Z, Wang J, Liu M, Ren D, Yu B, Zheng L, Hu X, Shi W and Xu J (2016) Immunomodulation by mesenchymal stem cells in treating human autoimmune disease-associated lung fibrosis. Stem Cell Res Ther 7:63. doi:10.1186/s13287-016-0319-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Latella G, Vetuschi A, Sferra R, Speca S, Gaudio E (2013) Localization of alphanubeta6 integrin-TGF-beta1/Smad3, mTOR and PPARgamma in experimental colorectal fibrosis. Eur J Histochem 57:e40. doi:10.4081/ejh.2013.e40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273. doi:10.1016/j.tibs.2004.03.008

    Article  PubMed  Google Scholar 

  9. Wang T, Chen SS, Chen R, Yu DM, Yu P (2015) Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-beta1-p38 MAPK pathway. Int J Clin Exp Med 8:6852–6865

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Chen D, Hao FY, Zhang KJ (2016) Targeting TGF-beta1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci 20:2581–2587

    CAS  PubMed  Google Scholar 

  11. Qi F, Cai P, Liu X, Peng M, Si G (2015) Adenovirus-mediated P311 inhibits TGF-beta1-induced epithelial-mesenchymal transition in NRK-52E cells via TGF-beta1-Smad-ILK pathway. Biosci Trends 9:299–306. doi:10.5582/bst.2015.01129

    Article  PubMed  Google Scholar 

  12. Manickam N, Patel M, Griendling KK, Gorin Y and Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307:F159-71. doi:10.1152/ajprenal.00546.2013

    Article  PubMed  Google Scholar 

  13. Piersma B, Bank RA and Boersema M (2015) Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Front Med 2:59. doi:10.3389/fmed.2015.00059

    Article  Google Scholar 

  14. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110. doi:10.1038/nrg2936

    Article  CAS  PubMed  Google Scholar 

  15. Yang S, Banerjee S, de Freitas A, Sanders YY, Ding Q, Matalon S, Thannickal VJ, Abraham E, Liu G (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180:484–493. doi:10.1016/j.ajpath.2011.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60:280–287. doi:10.2337/db10-0892

    Article  CAS  PubMed  Google Scholar 

  17. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432

    Article  CAS  PubMed  Google Scholar 

  18. Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Gunther A, Shi W, Baumgart-Vogt E (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci USA 112:E2048–E2057. doi:10.1073/pnas.1415111112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cabello-Verrugio C, Santander C, Cofre C, Acuna MJ, Melo F, Brandan E (2012) The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-beta-dependent signaling, and inhibits TGF-beta-dependent fibrotic response in skeletal muscles. J Biol Chem 287:6773–6787. doi:10.1074/jbc.M111.312488

    Article  CAS  PubMed  Google Scholar 

  20. Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157:657–663. doi:10.1083/jcb.200201049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363. doi:10.1038/nrm809

    Article  CAS  PubMed  Google Scholar 

  22. O’Connor JW and Gomez EW (2014) Biomechanics of TGFbeta-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 3:23. doi:10.1186/2001-1326-3-23

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. doi:10.1172/JCI20530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okada H, Danoff TM, Kalluri R and Neilson EG (1997) Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 273:F563-74

    PubMed  Google Scholar 

  25. Zhao YL, Zhu RT and Sun YL (2016) Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep 4:269–274. doi:10.3892/br.2016.578

    PubMed  PubMed Central  Google Scholar 

  26. Lee K, Nelson CM (2012) New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev. Cell Mol Biol 294:171–221. doi:10.1016/B978-0-12-394305-7.00004-5

    CAS  Google Scholar 

  27. Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C (2009) Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 57:1754–1764. doi:10.1002/glia.20888

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192. doi:10.1038/nrc1819

    Article  CAS  PubMed  Google Scholar 

  29. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, Gunn A, Nakagawa Y, Shimano H, Todorov I, Rossi JJ, Natarajan R (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889. doi:10.1038/ncb1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang YH, Zhang J, Song JN, Xu X, Cai JS, Zhou Y, Gao JG (2016) The PI3K-AKT-mTOR pathway activates recovery from general anesthesia. Oncotarget. doi:10.18632/oncotarget.10172

    Google Scholar 

  31. Liu DD, Han CC, Wan HF, He F, Xu HY, Wei SH, Du XH and Xu F (2016) Effects of inhibiting PI3K-Akt-mTOR pathway on lipid metabolism homeostasis in goose primary hepatocytes. Animal 10:1319–1327. doi:10.1017/S1751731116000380

    Article  CAS  PubMed  Google Scholar 

  32. Iekushi K, Taniyama Y, Kusunoki H, Azuma J, Sanada F, Okayama K, Koibuchi N, Iwabayashi M, Rakugi H, Morishita R (2011) Hepatocyte growth factor attenuates transforming growth factor-beta-angiotensin II crosstalk through inhibition of the PTEN/Akt pathway. Hypertension 58:190–196. doi:10.1161/HYPERTENSIONAHA.111.173013

    Article  CAS  PubMed  Google Scholar 

  33. Chau BN, Brenner DA (2011) What goes up must come down: the emerging role of microRNA in fibrosis. Hepatology 53:4–6. doi:10.1002/hep.24071

    Article  CAS  PubMed  Google Scholar 

  34. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi:10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murakami Y, Toyoda H, Tanaka M, Kuroda M, Harada Y, Matsuda F, Tajima A, Kosaka N, Ochiya T, Shimotohno K (2011) The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE 6:e16081. doi:10.1371/journal.pone.0016081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the Natural Science Foundation of Jiangsu Province (BK20131247) and the Research Project of “169 Project” in Zhenjiang City.

Author Contributions

Aihua Gong and Min Xu conceived the idea and designed the experiments. Min Xu, Guoying Wang, and Hailang Zhou analyzed data and wrote the paper, and the other remaining authors collected data. Min Xu and Guoying Wang equally contributed to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Gong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 383 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Wang, G., Zhou, H. et al. TGF-β1-miR-200a-PTEN induces epithelial–mesenchymal transition and fibrosis of pancreatic stellate cells. Mol Cell Biochem 431, 161–168 (2017). https://doi.org/10.1007/s11010-017-2988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2988-y

Keywords

Navigation