Skip to main content
Log in

Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

FADD and cFLIP both are pivotal components of death receptor signaling. The cellular signaling of apoptosis accomplished with death receptors and mitochondria follows independent pathways for cell death. FADD and cFLIP both have an important role in the regulation of apoptotic and non-apoptotic functions. Dysregulated expression of FADD and cFLIP is associated with resistance to apoptosis in cancer cells. Mitochondria are known to play critical role in maintaining cellular respiration and homeostasis in the cells as well as transduces various signals to determine the fate of cell death. However, involvement of FADD and cFLIP in regulation of mitochondrial integrity and programmed cell death signaling to define the fate of cells remains elusive. In the present study, we explored that, induced expression of FADD challenges the mitochondrial integrity and pulverizes the membrane potential by altering the expression of Bcl-2 and cytochrome c. In contrast, mutant of FADD was unable to affect the mitochondrial integrity. Interestingly, expression of FADD and cFLIP helps to balance redox potential by regulating the anti-oxidant levels. Further, we noticed that, knockdown of cFLIPL and induced expression of FADD rapidly accumulate intracellular ROS accompanied by JNK1 activation to substantiate apoptosis. Notably, the ectopic expression of cFLIPL resists the sensitivity of cancer cells against apoptosis inducers Etoposide and HA14-1. Altogether, our findings suggest that FADD and cFLIPL are important modulators of mitochondrial-associated apoptosis apart from the death receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cFLIP:

Cellular FLICE-like inhibitory protein

cFLIP KDL :

Knockdown of cFLIP large isoform

DR:

Death receptor

FADD:

Fas-associated death domain

JNK1:

c-jun-N-terminal kinase-1

MMP:

Mitochondrial membrane potential

MOM:

Mitochondrial outer membrane

NAC:

N-acetyl cysteine

ROS:

Reactive oxygen species

References

  1. Tourneur L, Chiocchia G (2010) FADD: a regulator of life and death. Trends Immunol 31:260–269. doi:10.1016/j.it.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  2. Safa AR (2013) Roles of c-FLIP in apoptosis, necroptosis, and autophagy. J Carcinog Mutagen. doi:10.4172/2157-2518.S6-003

    PubMed  PubMed Central  Google Scholar 

  3. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  4. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687. doi:10.1093/emboj/17.6.1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499. doi:10.1016/j.molcel.2009.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  7. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195. doi:10.1038/40657

    Article  CAS  PubMed  Google Scholar 

  8. Krueger A, Baumann S, Krammer PH, Kirchhoff S (2001) FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21:8247–8254. doi:10.1128/MCB.21.24.8247-8254.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. doi:10.1038/nrm2952

    Article  CAS  PubMed  Google Scholar 

  10. Marini ES, Giampietri C, Petrungaro S, Conti S, Filippini A, Scorrano L, Ziparo E (2015) The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria. Cell Death Differ 22:1131–1143. doi:10.1038/cdd.2014.197

    Article  CAS  PubMed  Google Scholar 

  11. He MX, He YW (2015) c-FLIP protects T lymphocytes from apoptosis in the intrinsic pathway. J Immunol 194:3444–3451. doi:10.4049/jimmunol.1400469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S, George NM, Luo X, Li Z, Youle RJ (2011) Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 18:235–247. doi:10.1038/cdd.2010.89

    Article  CAS  PubMed  Google Scholar 

  13. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406. doi:10.1038/onc.2008.307

    Article  CAS  PubMed  Google Scholar 

  14. Buchholz TA, Garg AK, Chakravarti N, Aggarwal BB, Esteva FJ, Kuerer HM, Singletary SE, Hortobagyi GN, Pusztai L, Cristofanilli M, Sahin AA (2005) The nuclear transcription factor kappaB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer. Clin Cancer Res 11:8398–8402. doi:10.1158/1078-0432.CCR-05-0885

    Article  CAS  PubMed  Google Scholar 

  15. Ecder T, Melnikov VY, Stanley M, Korular D, Lucia MS, Schrier RW, Edelstein CL (2002) Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int 61:1220–1230. doi:10.1046/j.1523-1755.2002.00250.x

    Article  CAS  PubMed  Google Scholar 

  16. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227. doi:10.1038/ni0302-221

    Article  CAS  PubMed  Google Scholar 

  17. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351. doi:10.1038/sj.onc.1204926

    Article  CAS  PubMed  Google Scholar 

  18. Golks A, Brenner D, Krammer PH, Lavrik IN (2006) The c-FLIP-NH2 terminus (p22-FLIP) induces NF-kappaB activation. J Exp Med 203:1295–1305. doi:10.1084/jem.20051556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ranjan K, Pathak C (2016) FADD regulates NF-kappaB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep 6:22787. doi:10.1038/srep22787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V, Chandel NS, Franzoso G (2011) NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13:1272–1279. doi:10.1038/ncb2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  23. Marquez RT, Xu L (2012) Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2:214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranjan K, Pathak C (2015) Expression of cFLIP determines the Basal interaction of Bcl-2 with Beclin-1 and regulates p53 dependent ubiquitination of Beclin-1 during autophagic stress. J Cell Biochem. doi:10.1002/jcb.25474

    Google Scholar 

  25. Tokarz P, Blasiak J (2014) Role of mitochondria in carcinogenesis. Acta Biochim Pol 61:671–678

    PubMed  Google Scholar 

  26. Naik E, Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208:417–420. doi:10.1084/jem.20110367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi:10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ranjan K, Sharma A, Surolia A, Pathak C (2014) Regulation of HA14-1 mediated oxidative stress, toxic response, and autophagy by curcumin to enhance apoptotic activity in human embryonic kidney cells. BioFactors 40:157–169. doi:10.1002/biof.1098

    Article  CAS  PubMed  Google Scholar 

  29. Waghela BN, Sharma A, Dhumale S, Pandey SM, Pathak C (2015) Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS One 10:e0117526. doi:10.1371/journal.pone.0117526

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dhumale SS, Waghela BN, Pathak C (2015) Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life 67:361–373. doi:10.1002/iub.1379

    Article  CAS  PubMed  Google Scholar 

  31. Ranjan K, Surolia A, Pathak C (2012) Apoptotic potential of Fas-associated death domain on regulation of cell death regulatory protein cFLIP and death receptor mediated apoptosis in HEK 293T cells. J Cell Commun Signal 6:155–168. doi:10.1007/s12079-012-0166-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Safa AR (2012) c-FLIP, a master anti-apoptotic regulator. Exp Oncol 34:176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tungteakkhun SS, Filippova M, Neidigh JW, Fodor N, Duerksen-Hughes PJ (2008) The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J Virol 82:9600–9614. doi:10.1128/JVI.00538-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513. doi:10.1074/jbc.M414425200

    Article  CAS  PubMed  Google Scholar 

  35. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. doi:10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilkie-Grantham RP, Matsuzawa S, Reed JC (2013) Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein. J Biol Chem 288:12777–12790. doi:10.1074/jbc.M112.431320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakajima A, Kojima Y, Nakayama M, Yagita H, Okumura K, Nakano H (2008) Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 27:76–84. doi:10.1038/sj.onc.1210624

    Article  CAS  PubMed  Google Scholar 

  38. Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768. doi:10.1165/ajrcmb.24.6.4228

    Article  CAS  PubMed  Google Scholar 

  39. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730. doi:10.1038/sj.onc.1203249

    Article  CAS  PubMed  Google Scholar 

  40. Nakano H (2004) Signaling crosstalk between NF-kappaB and JNK. Trends Immunol 25:402–405. doi:10.1016/j.it.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  41. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115. doi:10.1038/cr.2010.178

    Article  CAS  PubMed  Google Scholar 

  42. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A, Mirtsos C, Suzuki N, Bonnard M, Goeddel DV, Mak TW (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633–642

    Article  CAS  PubMed  Google Scholar 

  43. Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) TRAIL receptor and CD95 signal to mitochondria via FADD, caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid. J Biol Chem 277:40760–40767. doi:10.1074/jbc.M204351200

    Article  CAS  PubMed  Google Scholar 

  44. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  45. Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME, Yang X (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714. doi:10.1093/emboj/cdf356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jonsson G, Paulie S, Grandien A (2003) High level of cFLIP correlates with resistance to death receptor-induced apoptosis in bladder carcinoma cells. Anticancer Res 23:1213–1218

    PubMed  Google Scholar 

  47. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973. doi:10.1128/MCB.21.12.3964-3973.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305. doi:10.1128/MCB.21.16.5299-5305.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madesh M, Zong WX, Hawkins BJ, Ramasamy S, Venkatachalam T, Mukhopadhyay P, Doonan PJ, Irrinki KM, Rajesh M, Pacher P, Thompson CB (2009) Execution of superoxide-induced cell death by the proapoptotic Bcl-2-related proteins Bid and Bak. Mol Cell Biol 29:3099–3112. doi:10.1128/MCB.01845-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mercurio F, Manning AM (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18:6163–6171. doi:10.1038/sj.onc.1203174

    Article  CAS  PubMed  Google Scholar 

  51. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. doi:10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holmgren A (2000) Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2:811–820

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Chen F (2004) Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res 64:1902–1905

    Article  CAS  PubMed  Google Scholar 

  54. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G (2004) NF-kappaB and JNK: an intricate affair. Cell Cycle 3:1524–1529

    Article  CAS  PubMed  Google Scholar 

  55. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909. doi:10.1093/emboj/cdg379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939. doi:10.1016/j.freeradbiomed.2005.10.056

    Article  CAS  PubMed  Google Scholar 

  57. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Andrew Thorburn, (University of Colorado, USA), Dr. Eyal Gottlieb (Cancer Research UK, Beatson Institute), Dr. R. C. Bleackley (University of Alberta, Canada), Dr. Douglas Green (St. Jude Children’s Research Hospital, USA), Dr. Penelope Duerksen-Hughes (Loma Linda University, USA), Prof. Tamotsu Yoshimori (Osaka University, Japan), and Prof. Sabine Adam (Universitätsklinikum Schleswig–Holstein, Germany) for sharing plasmid constructs. This work was supported by the research grants scheme Cancer Research Pilot Project received from the Department of Biotechnology, Ministry of Science & Technology, Government of India to CP. The Indian Council of Medical Research, Govt. of India is acknowledged for providing Senior Research Fellowship to KR.

Author contributions

K. R. performed all the experiments. K. R and C. P. designed the experiments, analyzed the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramani Pathak.

Ethics declarations

Conflict of interest

No potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, K., Pathak, C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem 422, 135–150 (2016). https://doi.org/10.1007/s11010-016-2813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2813-z

Keywords

Navigation