Skip to main content

Advertisement

Log in

Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Satb2 is a special AT-rich binding transcription factor essential for osteoblast differentiation and bone formation. Specific microRNAs (miRNAs) have been identified to regulate the complex process of osteogenic differentiation. It remains unclear how miRNA expressions is changed in the Satb2-induced osteogenic differentiation of bone marrow stromal cells (BMSCs). From the miRNA expression profile data collected by us from Satb2-induced osteogenic differentiation of mouse BMSCs, we found that miR-27a was significantly down-regulated relative to non-treated cells 7 days post induction. By in silico analysis, we identified Sp7 as a miR-27a targeting gene and verified the findings by Western blot analysis, qRT-PCR, and luciferase reporter assays. We also analyzed the function of miR-27a in osteogenic differentiation by transfection of exogenous miR-27a into BMSCs. Overexpression of miR-27a remarkably inhibited the expression of Sp7 and attenuated Satb2-induced osteogenic differentiation. Our results suggest that expression of Sp7 during the early stage of Satb2-induced osteogenic differentiation of BMSCs is regulated by miR-27a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J (2011) Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 17:1767–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R (2006) Satb2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    Article  CAS  PubMed  Google Scholar 

  3. Kim IS, Jeong SJ, Kim SH, Jung JH, Park YG, Kim SH (2012) Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells. Biochem Biophys Res Commun 17:697–703

    Article  Google Scholar 

  4. Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan SG, Zhang J, Tu QS, Ye JH, Luo E, Schuler M, Kim MS, Griffin T, Zhao J, Duan XJ, Cochran DJ, Murray D, Yang PS, Chen J (2011) Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2. Biomaterials 32:8676–8683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong Y, Qian Y, Yang F, Wang H, Yu Y (2014) Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Eur J Oral Sci 122:190–197

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  CAS  PubMed  Google Scholar 

  9. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616

    Article  CAS  PubMed  Google Scholar 

  10. Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2010) A network connecting Runx2, SATB2, and the miR-23a ~ 27a ~ 24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 107:19879–19884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, Gu P, Fan X (2013) Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 22:2278–2286

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Zhao M, Xiao G, Franceschi RT (2005) Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Mol Ther 12:247–253

    Article  CAS  PubMed  Google Scholar 

  14. Tiscornia G, Singer O, Verma IM (2006) Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat Protoc 1:234–240

    Article  CAS  PubMed  Google Scholar 

  15. Itoh T, Ando M, Tsukamasa Y, Akao Y (2012) Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated bymicroRNA-370. FEBS Lett 586:1693–16701

    Article  CAS  PubMed  Google Scholar 

  16. Tang W, Li Y, Osimiri L, Zhang C (2011) Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem 286:32995–33002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang T, Chen XL, Huang ZQ, Wen WX, Xu M, Chen DW, Yu B, He J, Luo JQ, Yu J, Mao XB, Zheng P (2014) MicroRNA-27a promotes porcine myoblast proliferation by downregulating myostatin expression. Animal 8:1867–1872

    Article  CAS  PubMed  Google Scholar 

  18. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S (2007) The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67:11001–11011

    Article  CAS  PubMed  Google Scholar 

  19. Zhu L, Wang Z, Fan Q, Wang R, Sun Y (2014) microRNA-27a functions as a tumor suppressor in esophageal squamous cell carcinoma by targeting KRAS. Oncol Rep 31:280–286

    CAS  PubMed  Google Scholar 

  20. Venkatesh T, Nagashri MN, Swamy SS, Mohiyuddin SM, Gopinath KS, Kumar A (2013) Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma. PLoS One 8:e54643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, Fedorov Y (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 4:e5605

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J (2014) MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS One 9:e91354

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402:186–189

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C (2010) Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B (2004) Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene 341:101–110

    Article  CAS  PubMed  Google Scholar 

  26. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  CAS  PubMed  Google Scholar 

  27. Tu Q, Valverde P, Chen J (2006) Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun 341:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031

    Article  CAS  PubMed  Google Scholar 

  29. Shi K, Lu J, Zhao Y, Wang L, Li J, Qi B, Li H, Ma C (2013) MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 55:487–494

    Article  CAS  PubMed  Google Scholar 

  30. Chen S, Yang L, Jie Q, Lin YS, Meng GL, Fan JZ, Zhang JK, Fan J, Luo ZJ, Liu J (2014) MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Mol Med Rep 9:1820–1826

    CAS  PubMed  Google Scholar 

  31. Baglìo SR, Devescovi V, Granchi D, Baldini N (2013) MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 527:321–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Major Scientific and Technological Research Projects of Science and Technology Commission of Shanghai Municipality (Nos. 10JC1402600 and 14JC1490600) and a grant from Natural Science Foundation of Shanghai (No. 15ZR1406200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcheng Yu.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Yiming Gong and Jing Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Lu, J., Yu, X. et al. Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a. Mol Cell Biochem 417, 7–16 (2016). https://doi.org/10.1007/s11010-016-2709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2709-y

Keywords

Navigation