Skip to main content
Log in

Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y, Ochiai A (2000) Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30:73–81

    Article  PubMed  CAS  Google Scholar 

  2. Qiao L, Hanif R, Sphicas E, Shiff SJ, Rigas B (1998) Effect of aspirin on induction of apoptosis in HT-29 human colon adenocarcinoma cells. Biochem Pharmacol 55:53–64

    Article  PubMed  CAS  Google Scholar 

  3. Rao CV, Reddy BS (2004) NSAIDs and chemoprevention. Curr Cancer Drug Targets 4:29–42

    Article  PubMed  CAS  Google Scholar 

  4. Wong BC, Zhu GH, Lam SK (1999) Aspirin induced apoptosis in gastric cancer cells. Biomed Pharmacother 53:315–318

    Article  PubMed  CAS  Google Scholar 

  5. Jana NR (2008) NSAIDs and apoptosis. Cell Mol Life Sci 65:1295–1301

    Article  PubMed  CAS  Google Scholar 

  6. Piazza GA, Rahm AK, Finn TS, Fryer BH, Li H, Stoumen AL, Pamukcu R, Ahnen DJ (1997) Apoptosis primarily accounts for the growth-inhibitory properties of sulindac metabolites and involves a mechanism that is independent of cyclooxygenase inhibition, cell cycle arrest, and p53 induction. Cancer Res 57:2452–2459

    PubMed  CAS  Google Scholar 

  7. Bhattacharyya S, Ghosh S, Sil PC (2014) Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS One 9:e89026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Born G, Patrono C (2006) Antiplatelet drugs. Br J Pharmacol 147(Suppl. 1):S241–S251

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Butenas S, Cawthern KM, van’t Veer C, DiLorenzo ME, Lock JB, Mann KG (2001) Antiplatelet agents in tissue factor-induced blood coagulation. Blood 97:2314–2322

    Article  PubMed  CAS  Google Scholar 

  10. The Stroke Prevention in Atrial Fibrillation Investigators (1991) Stroke prevention in atrial fibrillation study. Final results. Circulation 84:527–539

    Article  Google Scholar 

  11. Korner A, Pawelek J (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217:1163–1165

    Article  PubMed  CAS  Google Scholar 

  12. Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5:2902–2909

    PubMed  CAS  Google Scholar 

  13. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem 281:8981–8990

    Article  PubMed  CAS  Google Scholar 

  14. Decker H, Schweikardt T, Tuczek F (2006) The first crystal structure of tyrosinase: all questions answered? Angew Chem Int Ed 45:4546–4550

    Article  CAS  Google Scholar 

  15. Aroca P, Solano F, Salinas C, Garcia-Borron JC, Lozano JA (1992) Regulation of the final phase of mammalian melanogenesis: the role of DOPAchrome tautomerase and the ratio between 5,6-dihydroxyindole-2-carboxylic acid and 5,6-dihydroxyindole. Eur J Biochem 208:155–163

    Article  PubMed  CAS  Google Scholar 

  16. Jackson IJ, Chambers DM, Tsukamoto K, Copeland NG, Gilbert DJ, Jenkins NA, Hearing VJ (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J 11:527–535

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Nishiyama S, Urabe K, Hearing VJ (1993) Pigment production in murine melanoma cells in regulated by tyrosinase-related protein-1 (TRP-1), DOPAchrome tautomerase (TRP-2), and a melanogenic inhibitor. J Investig Dermatol 100:126–131

    Article  PubMed  CAS  Google Scholar 

  18. Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11:519–526

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Romeo-Graillet C, Aberdam E, Biagoli N, Massabni W, Ortonne JP, Ballotti R (1996) Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 271:28052–28056

    Article  Google Scholar 

  20. Park HY, Perez JM, Laursen R, Hara M, Gilchrest BA (1999) Protein kinase C-β activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 274:16470–16478

    Article  PubMed  CAS  Google Scholar 

  21. Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411

    Article  PubMed  CAS  Google Scholar 

  22. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142:827–835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Englaro W, Bertolotto C, Busca R, Brunet A, Pages G, Ortonne JP, Ballotti R (1998) Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J Biol Chem 273:9966–9970

    Article  PubMed  CAS  Google Scholar 

  24. Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE (2000) Regulation of Microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp Cell Res 255:135–143

    Article  PubMed  CAS  Google Scholar 

  25. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor microphthalmia to c-kit signaling in melanocyte. Nature 391:298–301

    Article  PubMed  CAS  Google Scholar 

  26. Sato K, Takahashi H, Iraha R, Toriyama M (2008) Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biol Pharm Bull 31:33–37

    Article  PubMed  CAS  Google Scholar 

  27. Sato K, Takahashi H, Toriyama M (2011) Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch Dermatol Res 303:171–180

    Article  PubMed  CAS  Google Scholar 

  28. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A (2004) Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 112:1347–1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sato K, Toriyama M (2009) Effect of pyrroloquinoline quinone (PQQ) on melanogenic protein expression in murine B16 melanoma. J Dermatol Sci 53:140–145

    Article  PubMed  CAS  Google Scholar 

  30. Sato K, Morita M, Ichikawa C, Takahashi H, Toriyama M (2008) Depigment mechanisms of all-trans retinoic acid and retinol on B16 melanoma cells. Biosci Biotechnol Biochem 72:2589–2597

    Article  PubMed  CAS  Google Scholar 

  31. Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR (2006) Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem 281:29228–29235

    Article  PubMed  CAS  Google Scholar 

  32. Guthrie HD, Welch GR (2006) Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci 84:2089–2100

    Article  PubMed  CAS  Google Scholar 

  33. Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14:50–54

    Article  PubMed  CAS  Google Scholar 

  34. Aksan I, Goding CR (1998) Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Mol Cell Biol 18:6930–6938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  PubMed  CAS  Google Scholar 

  36. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC (2003) Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci 116:1699–1706

    Article  PubMed  CAS  Google Scholar 

  37. Liu WS, Kuan YD, Chiu KH, Wang WK, Chang FH, Liu CH, Lee CH (2013) The extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK signaling pathway. Mar Drugs 11:1899–1908

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ashton M, Hanson PJ (2002) Disparate effects of non-steroidal anti-inflammatory drugs on apoptosis in guinea-pig gastric mucous cells: inhibition of basal apoptosis by diclofenac. Br J Pharmacol 135:407–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Weissmann G (1991) Aspirin. Sci Am 264:84–90

    Article  PubMed  CAS  Google Scholar 

  40. Abdel-Malek Z, Scott MC, Suzuki I, Tada A, Im S, Lamoreux L, Ito S, Barsh G, Hearing VJ (2000) The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment Cell Res 13(Suppl. 8):156–162

    Article  PubMed  Google Scholar 

  41. Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E, Ortonne JP, Ballotti R (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18:694–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE (2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 14:301–312

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim ES, Jeon HB, Lim H, Shin JH, Park SJ, Jo YK, Oh W, Yang YS, Cho DH, Kim JY (2015) Conditioned media from human umbilical cord blood-derived mesenchymal stem cells inhibits melanogenesis by promoting proteasomal degradation of Mitf. PLoS One 10:e0128078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rundhaug JE, Fischer SM (2008) Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem Photobiol 84:322–329

    Article  PubMed  CAS  Google Scholar 

  45. Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 3:207–222

    Article  Google Scholar 

  46. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  PubMed  CAS  Google Scholar 

  47. Warner TD, Giuliano FG, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA 96:7563–7568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kim JY, Shin JY, Kim MR, Hann S-K, Oh SH (2012) siRNA-mediated knock-down of COX-2 in melanocytes suppress melanogenesis. Exp Dermatol 21:420–425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 25740018.

Author contributions

T.N. and K.S. designed the experiments; T.N., M.U., M.A., S.S., and K.S. performed the experiments; T.N. and K.S. analyzed the data. K.S. wrote this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuomi Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishio, T., Usami, M., Awaji, M. et al. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol Cell Biochem 412, 101–110 (2016). https://doi.org/10.1007/s11010-015-2613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2613-x

Keywords

Navigation