Skip to main content
Log in

Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ovarian injury can be induced by heat stress. Mice granulosa cells (GCs) are critical for normal ovarian function and they synthesize a variety of growth factors and steroids for the follicle. Furthermore, the growth, differentiation, and maturate of theca cells and oocyte are dependent upon the synthesis of GCs. Due to the critical biological functions of GCs, we hypothesized that the apoptosis and dysfunction of GCs could also be induced by heat stress. We analyzed GCs apoptosis and evaluated the expression of apoptosis-related genes (caspase-3, Bax, Bcl-2) after heat treatment. Radio immunity assay was used to measure the secretion of 17β-estradiol (E2) and progesterone (P4). RT-PCR was used to evaluate the expression of steroids-related genes (Star, CYP11A1, CYP19A1). Our data suggested that heat stress inhibited GCs proliferation, induced GCs apoptosis, decreased E2 and P4 secretion, reduced the steroids-related genes mRNA expression. Besides, our results indicated that heat treatment-induced apoptosis of GCs through the mitochondrial pathway, which involved caspase-3 and Bax. The reduction in steroids secretion and mRNA expression of Star, CYP11A1, and CYP19A1 might also play a role in heat-induced GCs apoptosis and ovarian injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marion RS, Spain JN, Spiers DE (1998) Effects of controlled heat stress on ovarian function of dairy cattle. Lactating cows. J Dairy Sci 81:2124–2131

    Article  PubMed  Google Scholar 

  2. Nivet AL, Vigneault C, Blondin P (2013) Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction 145:555–565

    Article  PubMed  CAS  Google Scholar 

  3. Guo L, Zhang M (2008) Advances in heat stress on livestock reproductive function and its regulation mechanism. China Anim Husb Vet Med 9:119–122

    Google Scholar 

  4. Zeng JY (2012) Progress on Animal reproductive performance of heat stress. China Animal Husbandry and Veterinary Digest 7

  5. Wu JG, Mao DG (2007) Effect of heat stress on reproductive function in animals and the mechanism. China Anim Husb Vet Dig 4:28–29

    Google Scholar 

  6. Havelock JC, Rainey WE, Carr BR (2004) Ovarian granulosa cell lines. Mol Cell Endocrinol 228:67–78

    Article  PubMed  CAS  Google Scholar 

  7. Jančar N, Kopitar AN, Ihan A (2007) Effect of apoptosis and reactive oxygen species production in human granulosa cells on oocyte fertilization and blastocyst development. J Assist Reprod Genet 24:91–97

    Article  PubMed  PubMed Central  Google Scholar 

  8. Denkova R, Bourneva V, Staneva-Dobrovski L (2004) In vitro effects of inhibin on apoptosis and apoptosis related proteins in human ovarian granulosa cells. Endocr Regul 38:51–55

    PubMed  CAS  Google Scholar 

  9. Wang SJ, Liu WJ, Wu CJ (2012) Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2). Theriogenology 78:1517–1526

    Article  PubMed  CAS  Google Scholar 

  10. Matsuda F, Inoue N, Manabe N (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58:44–50

    Article  PubMed  CAS  Google Scholar 

  11. Albertini DF, Combelles CM, Benecchi E (2001) Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121:647–653

    Article  PubMed  CAS  Google Scholar 

  12. Gilchrist RB, Ritter LJ, Armstrong DT (2004) Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci 82–83:431–446

    Article  PubMed  CAS  Google Scholar 

  13. Carabatsos MJ, Sellitto C, Goodenough DA (2000) Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 226:167–179

    Article  PubMed  CAS  Google Scholar 

  14. Renault TT, Floros KV, Elkholi R (2015) Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis. Mol Cell 57:69–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Croker BA, O’Donnell JA, Nowell CJ (2011) Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proc Natl Acad Sci 108:13135–13140

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kamoi K, Iino M, Ishiguro H (2006) Regeneration therapy for oral disease. Hum Cell 19:76–82

    Article  PubMed  Google Scholar 

  17. Xie X, Clausen OPF, Boysen M (2003) Prognostic value of Bak expression in oral tongue squamous cell carcinomas. Oncol Rep 10:369–374

    PubMed  CAS  Google Scholar 

  18. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lalier L, Cartron PF, Juin P (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896

    Article  PubMed  CAS  Google Scholar 

  20. Del Poeta G, Venditti A, Del Principe MI (2003) Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 101:2125–2131

    Article  PubMed  CAS  Google Scholar 

  21. Oshikawa T, Okamoto M, Ahmed SU (2006) The relationship between gene expression of Bcl-2 and Bax and the therapeutic effect in oral cancer patients. Cancer Chemother 33:1723–1725

    CAS  Google Scholar 

  22. Chen W, Woodruff TK, Mayo KE (2000) Activin A-Induced HepG2 Liver Cell Apoptosis: involvement of activin receptors and smad proteins 1. Endocrinology 141:1263–1272

    PubMed  CAS  Google Scholar 

  23. Matsuda-Minehata F, Maeda A, Cheng Y (2008) Regulation of granulosa cell apoptosis by death ligand–receptor signaling. Anim Sci J 79:1–10

    Article  CAS  Google Scholar 

  24. Gillies LA, Kuwana T (2014) Apoptosis regulation at the mitochondrial outer membrane. J Cell Biochem 115:632–640

    Article  PubMed  CAS  Google Scholar 

  25. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  CAS  Google Scholar 

  26. Sudo H, Minami A (2010) Regulation of apoptosis in nucleus pulposus cells by optimized exogenous Bcl-2 overexpression. J Orthop Res 28:1608–1613

    Article  PubMed  CAS  Google Scholar 

  27. Porter AG (2006) Flipping the safety catch of procaspase-3. Nat Chem Biol 2:509–510

    Article  PubMed  CAS  Google Scholar 

  28. Chaube SK, Prasad PV, Thakur SC (2005) Estradiol protects clomiphene citrate–induced apoptosis in ovarian follicular cells and ovulated cumulus–oocyte complexes. Fertil Steril 84:1163–1172

    Article  PubMed  CAS  Google Scholar 

  29. Rosenfeld CS, Wagner JS, Roberts RM (2001) Intraovarian actions of oestrogen. Reproduction 122:215–226

    Article  PubMed  CAS  Google Scholar 

  30. Bayne S, Li H, Jones MEE (2011) Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell 2:333–346

    Article  PubMed  CAS  Google Scholar 

  31. Peluso JJ, Pappalardo A (2004) Progesterone regulates granulosa cell viability through a protein kinase G-dependent mechanism that may involve 14-3-3σ. Biol Reprod 71:1870–1878

    Article  PubMed  CAS  Google Scholar 

  32. Drouilhet L, Taragnat C, Fontaine J (2010) Endocrine characterization of the reproductive axis in highly prolific lacaune sheep homozygous for the FecLL mutation. Biol Reprod 82:815–824

    Article  PubMed  CAS  Google Scholar 

  33. Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32:81–151

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213

    Article  PubMed  CAS  Google Scholar 

  35. Belin F, Goudet G, Duchamp G (2009) Intrafollicular concentrations of steroids and steroidogenic enzymes in relation to follicular development in the Mare. Biol Reprod 62:1335–1343

    Article  Google Scholar 

  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta {\rm C}_{\text{t}} }}\) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  37. Vandesompele J, De Preter K, Pattyn F, (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: research0034

  38. Minegish T, Nakamura K, Takakura Y (1991) Cloning and sequencing of human FSH receptor cDNA. Biochem Biophys Res Commun 175:1125–1130

    Article  CAS  Google Scholar 

  39. Allan CM, Garcia A, Spaliviero J (2006) Maintenance of spermatogenesis by the activated human (Asp 567 Gly) FSH receptor during testicular regression due to hormonal withdrawal. Biol Reprod 74:938–944

    Article  PubMed  CAS  Google Scholar 

  40. Jun JK, Yoon JS, Ku SY (2006) Follicle-stimulating hormone receptor gene polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET. J Hum Genet 51:665–670

    Article  PubMed  CAS  Google Scholar 

  41. Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773

    PubMed  CAS  Google Scholar 

  42. Tischner D, Woess C, Ottina E (2010) Bcl-2-regulated cell death signalling in the prevention of autoimmunity. Cell Death Dis 1:e48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim JY, Yenari MA, Lee JE (2015) Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen–glucose deprivation. Neuroscience 286:272–280

    Article  PubMed  CAS  Google Scholar 

  44. Tan JGL, Lee YY, Wang T (2015) Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Biotechnol J 10:790–800

    Article  PubMed  CAS  Google Scholar 

  45. Lee JM, Lee JM, Kim KR (2015) Zinc preconditioning protects against neuronal apoptosis through the mitogen-activated protein kinase-mediated induction of heat shock protein 70. Biochem Biophys Res Commun 459:220–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China No. 31501955, the Science and Technology Sustentation Project of China (2011BAD28B02, 2012BAD12B00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Li, L., Xiao, C. et al. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol Cell Biochem 412, 81–90 (2016). https://doi.org/10.1007/s11010-015-2610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2610-0

Keywords

Navigation