Skip to main content
Log in

Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Resveratrol (E-3,5,4′-trihydroxystilbene) is a polyphenol found in red wine that has been shown to have multiple anti-cancer properties. Although cis-(Z)- and trans-(E)-isomers of resveratrol occur in nature, the cis form is not biologically active. However, methylation at key positions of the cis form results in more potent anti-cancer properties. This study determined that synthetic cis-polymethoxystilbenes (methylated analogs of cis-resveratrol) inhibited cancer-related phenotypes of metastatic B16 F10 and non-metastatic B16 F1 mouse melanoma cells. In contrast with cis- or trans-resveratrol and trans-polymethoxystilbene which were ineffective at 10 μM, cis-polymethoxystilbenes inhibited motility and proliferation of melanoma cells with low micromolar specificity (IC50 < 10 μM). Inhibitory effects by cis-polymethoxystilbenes were significantly stronger with B16 F10 cells and were accompanied by decreased expression of β-tubulin and pleckstrin homology domain-interacting protein, a marker of metastatic B16 cells. Thus, cis-polymethoxystilbenes have potential as chemotherapeutic agents for metastatic melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muthusamy V, Piva TJ (2011) Melanoma cell signaling: looking beyond RAS-RAF-MEK skin cancers. In: La Porta C (ed) Risk factors, prevention, and therapy. InTech, Rijeka

    Google Scholar 

  2. Conde-Perez A, Larue L (2013) Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol 93:82–86

    Article  PubMed  Google Scholar 

  3. Chillemi R, Sciuto S, Spatafora C, Tringali C (2007) Anti-tumor properties of stilbene-based resveratrol analogues: recent results. Nat Prod Commun 2:499–513

    CAS  Google Scholar 

  4. Bhattacharya S, Darjatmoko SR, Polans AS (2011) Resveratrol modulates the malignant properties of cutaneous melanoma via changes in the activation and attenuation of the anti-apoptotic proto-oncogenic protein Akt/PKB. Melanoma Res 21:180–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Osmond GW, Augustine CK, Zipfel PA, Padussis J, Tyler DS (2012) Enhancing melanoma treatment with resveratrol. J Surg Res 172:109–115

    Article  CAS  PubMed  Google Scholar 

  6. Spatafora C, Tringali C (2012) Natural-derived polyphenols as potential anticancer agents. Anticancer Agents Med Chem 12:902–918

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad KA, Clement M-V, Pervaiz S (2003) Pro-oxidant activity of low doses of resveratrol inhibits hyfrogen peroxide-induced apoptosis. Ann NY Acad Sci 1010:365–373

    Article  CAS  PubMed  Google Scholar 

  8. Gusman J, Malonne H, Atassi G (2001) A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 22:1111–1117

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang H, Kim YS, Koehler RC, Dore S (2003) Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann NY Acad Sci 993:276–286

    Article  CAS  PubMed  Google Scholar 

  10. Qian YP, Cai YJ, Fan GJ, Wei QY, Yang J, Zheng LF, Li XZ, Fang JG, Zhou B (2009) Antioxidant-based lead discovery for cancer chemoprevention: the case of resveratrol. J Med Chem 52:1963–1974

    Article  CAS  PubMed  Google Scholar 

  11. Vitale N, Kisslinger A, Paladino S, Procaccini C, Matarese G, Pierantoni GM, Mancini FP, Tramontano D (2013) Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells. PLoS One 8(11):e80728

    Article  PubMed Central  PubMed  Google Scholar 

  12. Madlener S, Saiko P, Vonach C, Viola K, Huttary N, Stark N, Popescu R, Gridling M, Vo NT, Herbacek I, Davidovits A, Giessrigl B, Venkateswarlu S, Geleff S, Jäger W, Grusch M, Kerjaschki D, Mikulits W, Golakoti T, Fritzer-Szekeres M, Szekere T, Krupitza G (2010) Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro. Br J Cancer 102:1361–1370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu Y, Liu F (2013) Targeting mTOR: evaluating the therapeutic potential of resveratrol for cancer treatment. Anticancer Agents Med Chem 13:1032–1038

    Article  CAS  PubMed  Google Scholar 

  14. Azios NG, Dharmawardhane SF (2005) Resveratrol and estradiol exert disparate effects on cell migration, cell surface actin structures, and focal adhesion assembly in MDA-MB-231 human breast cancer cells. Neoplasia 7:128–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Slater SJ, Seiz JL, Cook AC, Stagliano BA, Buzas CJ (2003) Inhibition of protein kinase C by resveratrol. Biochim Biophys Acta 1637:59–69

    Article  CAS  PubMed  Google Scholar 

  16. Das J, Pany S, Majhi A (2011) Chemical modifications of resveratrol for improved protein kinase C alpha activity. Bioorg Med Chem 19:5321–5333

    Article  CAS  PubMed  Google Scholar 

  17. Saiko P, Graser G, Giessrigl B, Steinmann MT, Schuster H, Lackner A, Grusch M, Krupitza G, Jaeger W, Somepalli V, Golakoti T, Fritzer-Szekeres M, Szekeres T (2013) Digalloylresveratrol, a novel resveratrol analog inhibits the growth of human pancreatic cancer cells. Invest New Drugs 31:1115–1124

    Article  CAS  PubMed  Google Scholar 

  18. Wang M, Yu T, Zhu C, Sun H, Qiu Y, Zhu X, Li J (2014) Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr Cancer 66:435–440

    Article  CAS  PubMed  Google Scholar 

  19. Chabert P, Fougerousse A, Brouillard R (2006) Anti-mitotic properties of resveratrol analog (Z)-3,5,4′-trimethoxystilbene. BioFactors 27:37–46

    Article  CAS  PubMed  Google Scholar 

  20. Fang Y, Bradley MJ, Cook KM, Herrick EJ, Nicholl MB (2013) A potential role for resveratrol as a radiation sensitizer for melanoma treatment. J Surg Res 183:645–653

    Article  CAS  PubMed  Google Scholar 

  21. Shih A, Zhang S, Cao HJ, Boswell S, Wu Y-H, Tang H-Y, Lennartz MR, Davis FB, Davis P, Lin H-Y (2004) Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-α. Mol Cancer Ther 3:1355–1363

    CAS  PubMed  Google Scholar 

  22. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  23. Walle T (2011) Bioavailability of resveratrol. Ann NY Acad Sci 1215:9–15

    Article  CAS  PubMed  Google Scholar 

  24. Weng C-J, Wu C-F, Huang H-W, Wu C-H, Ho CT, Yen G-C (2010) Evaluation of anti-invasion effect of resveratrol and related methoxy analogues on human hepatocarcinoma cells. J Agric Food Chem 58:2886–2894

    Article  CAS  PubMed  Google Scholar 

  25. Schneider Y, Chabert P, Stutzmann J, Coelho D, Fougerousse A, Gosse F, Launay J-F, Brouillard R, Raul F (2003) Resveratrol analog (Z)-3,5,4′-trimethoxystilbene is a potent anti-mitotic drug inhibiting tubulin polymerization. Int J Cancer 107:189–196

    Article  CAS  PubMed  Google Scholar 

  26. Mazue F, Colin D, Gobbo J, Wegner M, Rescifina A, Spatafora C, Fasseur D, Delmas D, Meunier P, Tringali C, Latruffe N (2010) Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs. Eur J Med Chem 45:2972–2980

    Article  CAS  PubMed  Google Scholar 

  27. Gosslau A, Chen M, Ho CT, Chen KY (2005) A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts. Br J Cancer 92:513–521

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Wong Y, Osmond G, Brewer KI, Tyler DS, Andrus MB (2010) Synthesis of 4′-ester analogs of resveratrol and their evaluation in malignant melanoma and pancreatic cell lines. Bioorg Med Chem Lett 20:1198–1201

    Article  CAS  PubMed  Google Scholar 

  29. Roman BI, De Coen LM, Mortier STFC, De Ryck T, Vanhoecke BWA, Katritzky AR, Bracke ME, Stevens CV (2013) Design, synthesis, and structure-activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes. Bioorg Med Chem 21:5054–5063

    Article  CAS  PubMed  Google Scholar 

  30. Raz A, Mclellan WL, Hart IR, Bucana CD, Hoyer LC, Sela B-A, Dragsten P, Fidler IJ (1980) Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res 40:1645–1651

    CAS  PubMed  Google Scholar 

  31. Bennett DC, Cooper PJ, Hart IR (1987) A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 39:414–418

    Article  CAS  PubMed  Google Scholar 

  32. Melnikova VO, Bolshakov SV, Walker C, Ananthaswamy HN (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23:2347–2356

    Article  CAS  PubMed  Google Scholar 

  33. Marone R, Erhart D, Mertz AC, Bohnacker T, Schnell C, Cmiljanovic V, Stauffer F, Garcia-Echeverria C, Giese B, Maira S-M, Wymann MP (2009) Targeting melanoma with dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors. Mol Cancer Res 7:601–613

    Article  CAS  PubMed  Google Scholar 

  34. Cardile V, Chillemi R, Lombardo L, Sciuto S, Spatafora C, Tringali C (2007) Anti-proliferative activity of methylated analogues of E- and Z-resveratrol. Z Naturforsch C 62:189–195

    Article  CAS  PubMed  Google Scholar 

  35. Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E (1991) Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J Med Chem 34:2579–2588

    Article  CAS  PubMed  Google Scholar 

  36. Cushman M, Nagarathnam D, Gopal D, He HM, Lin CM, Hamel E (1992) Synthesis and evaluation of analogues of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)etheanes potential cytotoxic and antimitotic agents. J Med Chem 35:2293–2306

    Article  CAS  PubMed  Google Scholar 

  37. Zaki MA, Balachandran P, Khan S, Wang M, Mohammed R, Hetta MH, Pasco DS, Muhammad I (2013) Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)-3,4,3′,5′-tetramethoxystilbene isolated from Eugenia rigida. J Nat Prod 76:679–684

    Article  CAS  PubMed  Google Scholar 

  38. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration, and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309

    Article  CAS  PubMed  Google Scholar 

  39. De Semir D, Nosrati M, Bezrookove V, Dar AA, Federman S, Bienvenu G, Venna S, Rangel J, Climent J, Tamguney TMM, Thummala S, Yong S, Leong SPL, Hagg C, Billings P, Miller JR, Sagebiel RW, Debs R, Kashani-Sabet M (2012) Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis. Proc Natl Acad Sci 109:7067–7072

    Article  PubMed Central  PubMed  Google Scholar 

  40. Cardile V, Lombardo L, Spatafora C, Tringali C (2005) Chemo-enzymatic synthesis and growth-inhibition activity of resveratrol analogues. Bioorg Chem 33:22–33

    Article  CAS  PubMed  Google Scholar 

  41. Belleri M, Ribatti D, Nicoli S, Cotelli F, Forti L, Vannini V, Stivala LA, Presta M (2005) Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4′-trimethoxystilbene. Mol Pharm 67:1451–1459

    Article  CAS  Google Scholar 

  42. Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA (2000) Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol Biol Cell 11:2999–3012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Huff LM, Sackett DL, Poruchynsky MS, Fojo T (2010) Microtubule disrupting chemotherapeutics result in enhanced proteasome-mediated degradation and disappearance of tubulin in neural cells. Cancer Res 70:5870–5879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Cichocki M, Baer-Dubowska W, Wierzchowski M, Murias M, Jodynis-Liebert J (2014) 3,4,5,4′-trans-tetramethoxystilbene (DMU-212) modulates the activation of NF-κB, AP-1, and STAT3 transcription factors in rat liver carcinogenesis induced by initiation-promotion regimen. Mol Cell Biochem 391:27–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shatarupa De and Xin Zhao (Graduate Center of C.U.N.Y.) for technical assistance. This work was supported by funding (to VLM) from PSC-CUNY, URME small Grant programs sponsored by The City University of New York, and a FIR Grant (to CT) by the University of Catania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Rotenberg.

Additional information

Valery L. Morris—Deceased

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, V.L., Toseef, T., Nazumudeen, F.B. et al. Anti-tumor properties of cis-resveratrol methylated analogs in metastatic mouse melanoma cells. Mol Cell Biochem 402, 83–91 (2015). https://doi.org/10.1007/s11010-014-2316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2316-8

Keywords

Navigation