Skip to main content

Advertisement

Log in

Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) can differentiate into a number of cell types, including adipocytes and osteoblasts. MSC differentiation into adipocytes inhibits osteogenic differentiation and vice versa. Therefore, understanding the mechanisms of MSC differentiation at the signaling level can lead to the development of novel therapeutic strategies toward tissue regeneration. Sphingosine-1-phosphate (S1P) is a signaling molecule that regulates many cellular responses, including cellular differentiation. However, the effects of S1P on MSC differentiation are largely unknown. The purpose of study was to investigate whether S1P drives MSCs toward either adipogenic or osteogenic differentiation, and if so, to clarify the underlying signaling mechanisms for such differentiation. We found that S1P inhibited adipogenic differentiation of C3H10T1/2 multipotent stem cells, while promoting their osteogenic differentiation. During adipogenic differentiation, S1P suppressed the cAMP accumulation in a Gi-protein-dependent manner. The Gi-dependent S1P signaling suppressed C/EBPβ expression, which is essential for adipogenic differentiation. Furthermore, S1P did not affect cAMP-independent adipogenic differentiation. These findings suggest that S1P suppresses cAMP accumulation, leading to inhibition of C/EBPβ expression, thereby resulting in decreased adipogenic differentiation of C3H10T1/2 cells. Thus, our findings provide novel molecular mechanisms as regards how S1P inhibits adipogenic differentiation of C3H10T1/2 cells, indicating a potential beneficial role for regeneration and repair of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

cAMP:

Cyclic AMP

C/EBP:

CAAT/enhancer-binding protein

DEX:

Dexamethasone

FABP4:

Fatty acid-binding protein 4

GPCR:

G-protein-coupled receptor

IBMX:

Isobutylmethylxanthine

OC:

Osteocalcin

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PPARγ:

Peroxisome proliferator-activated receptor γ

SPHK:

Sphingosine kinase

S1P:

Sphingosine-1-phosphate

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  2. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  CAS  PubMed  Google Scholar 

  3. Hao W, Dong J, Jiang M, Wu J, Cui F, Zhou D (2010) Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop 34:1341–1349

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50:477–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rahman S, Czernik PJ, Lu Y, Lecka-Czernik B (2012) β-catenin directly sequesters adipocytic and insulin sensitizing activities but not osteoblastic activity of PPARγ2 in marrow mesenchymal stem cells. PLoS ONE 7:e51746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Reusch JE, Colton LA, Klemm DJ (2012) CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008–1020

    Article  Google Scholar 

  7. Jia B, Madsen L, Petersen RK, Techer N, Kopperud R, Ma T, Doskeland SO, Alhaud G, Wang J, Amri EZ, Kristiansen K (2012) Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells. PLoS ONE 7:e34114. doi:10.1371/journal.pone.0034114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5:1538–1552

    Article  CAS  PubMed  Google Scholar 

  9. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234

    Article  CAS  PubMed  Google Scholar 

  10. Smas CM, Sul HS (1995) Control of adipocyte differentiation. Biochem J 309:697–710

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  12. Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  13. Rawadi G, Vayssière B, Dunn F et al (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853

    Article  CAS  PubMed  Google Scholar 

  14. Matsuzaki E, Takahashi-Yanaga F, Miwa Y, Hirata M et al (2006) Differentiation-inducing factor-1 alters canonical Wnt signaling and suppresses alkaline phosphatase expression in osteoblast-like cell lines. J Bone Miner Res 21:1307–1316

    Article  CAS  PubMed  Google Scholar 

  15. Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854

    Article  CAS  PubMed  Google Scholar 

  16. Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558

    Article  CAS  PubMed  Google Scholar 

  17. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Z, Chen Z, Zhao X, Pan F et al (2011) Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions. J Biomed Sci 18:37. doi:10.1186/1423-0127-18-37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nincheri P, Luciani P, Squecco R, Donati C et al (2009) Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cell Mol Life Sci 66:1741–1754

    Article  CAS  PubMed  Google Scholar 

  20. Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F et al (2013) Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell like cell lines. Bone 55:315–324

    Article  CAS  PubMed  Google Scholar 

  21. Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H (2012) Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 423:200–205

    Article  CAS  PubMed  Google Scholar 

  22. Moon MH, Jeong JK, Lee JH, Park YG, Lee YJ, Seol JW, Park SY (2012) Antiobesity activity of a sphingosine 1-phosphate analogue FTY720 observed in adipocytes and obese mouse model. Exp Mol Med 44:603–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hashimoto T, Igarashi J, Kosaka H (2009) SPHK is induced in 3T3-L1 cells and promotes adipogenesis. J Lipid Res 50:602–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17:242–254

    Article  CAS  PubMed  Google Scholar 

  25. Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607–9611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Khayat G, Resenweig DH, Quinn TM (2012) Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation 83:179–184

    Article  CAS  PubMed  Google Scholar 

  27. Huang K, Fu J, Li W, Dong S, Yu S, Hu Z, Wang H, Xie Z (2014) MicroRNA-125 regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro. Biochimie 102:47–55

    Article  CAS  PubMed  Google Scholar 

  28. Laudes M, Christodoulides C, Sewter C, Rochford JJ, Considine RV, Sethi JK, Vidal-Pulg A, O’rahilly S (2004) Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis. J Biol Chem 279:11711–11718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A et al (1998) Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol 142:229–240

    Article  PubMed Central  PubMed  Google Scholar 

  30. Means CK, Miyamoto S, Chun J, Brown JH (2008) S1P1 receptor localization confers selectivity for Gi-mediated cAMP and contractile responses. J Biol Chem 283:11954–11963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang J, Badeanlou L, Bielawski J, Ciaraldi TP, Samad F (2014) Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. Am J Physiol Endocrinol Metab 306:E756–E768

    Article  CAS  PubMed  Google Scholar 

  32. Petrie Aronin CE, Shin SJ, Naden KB, Rios PD Jr et al (2010) The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 31:6417–6424

    Article  CAS  PubMed  Google Scholar 

  33. Petrie Aronin CE, Sefcik LS, Tholpady SS, Tholpady A et al (2010) FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng Part A 16:1801–1809

    Article  CAS  PubMed  Google Scholar 

  34. Sakaue H, Ogawa W, Matsumoto M, Kuroda S, Takata M, Sugimoto T, Spiegelman BM, Kasuga M (1998) Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. J Biol Chem 1273:28945–28952

    Article  Google Scholar 

  35. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved cellular proliferation. J Cell Biol 114:155–167

    Article  CAS  PubMed  Google Scholar 

  36. Carpio LC, Stephan E, Kamer A, Dziak R (1999) Sphingolipids stimulate cell growth via MAP kinase activation in osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 61:267–273

    Article  CAS  PubMed  Google Scholar 

  37. Pandey V, Vijayakumar MV, Kaul-Ghanekar R, Mamgain H, Paknikar K, Bhat MK (2009) Atomic force microscopy, biochemical analysis of 3T3-L1 cells differentiated in the absence and presence of insulin. Biochim Biophys Acta 1790:57–64

    Article  CAS  PubMed  Google Scholar 

  38. Roztocil E, Nicholl SM, Davies MG (2009) Mechanisms of sphingosine-1-phosphate-induced akt-dependent smooth muscle cell migration. Surgery 145:34–41

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid for Scientific Research: 26462886 to EM, 24229009 to MH, 25253201 to FN). We would like to thank the Research Support Center, Graduate School of Medical Sciences, Kyushu University for assistance.

Conflict of interest

The authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko Matsuzaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, Y., Matsuzaki, E., Higashi, K. et al. Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte. Mol Cell Biochem 401, 39–47 (2015). https://doi.org/10.1007/s11010-014-2290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2290-1

Keywords

Navigation