Skip to main content

Advertisement

Log in

Apoptotic events induced by high glucose in human hepatoma HepG2 cells involve endoplasmic reticulum stress and MAPK’s activation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate whether endoplasmic reticulum (ER) stress participates in the induction of apoptosis in HepG2 cells exposed to high glucose and explore its probable mechanism. A series of experiments were performed following HepG2 cells treated with different concentrations of glucose for 48 h. The apoptosis was detected by means of Hoechst staining and flow cytometry. Caspase-3 activity assay was performed by measuring the pNA (p-nitroaniline) to indirectly reveal the catalytic activity of caspase-3. The expression levels of apoptosis-, ER stress-associated proteins and MAPKs were analyzed by western blot. To further characterize the molecular mechanisms, the effects of antioxidant alpha-lipoic acid (ALA) and specific inhibitors for JNK and p38 (SP600125 and SB203580, respectively) were examined by Hoechst staining, immunofluorescence, and western blot. After HepG2 cells were incubated with high glucose for 48 h, both Hoechst staining and flow cytometry analyses unveiled the apoptosis of HepG2 cells. Caspase-3 activity assay revealed that the activity of caspase-3 was enhanced. Western blot showed an enhancement of pro-caspase-9 degradation, a reduction of Bcl-2/Bax ratio, a decrease in GRP78 expression, and increases in CHOP and p47/phox levels. In addition, western blot analysis presented that phosphorylation of p38 and JNK was triggered and that the expression of ASK1 was elevated. In the case of the contributions of oxidative stress and the MAPK signaling pathways, all ALA, SP600125 and SB203580 were able to largely rescue high glucose-induced apoptosis. High glucose induced the apoptosis in HepG2 cells through the activation of ASK1-p38/JNK pathway mediated by ER stress and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M (2011) Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country- years and 2.7 million participants. Lancet 378(9785):31–40

    Article  CAS  PubMed  Google Scholar 

  2. Global status report on noncommunicable diseases (2010) Geneva, World Health Organization

  3. Liu BC, Song X, Lu XY, Li DT, Eaton DC, Shen BZ, Li XQ, Ma HP (2013) High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochim Biophys Acta 1833:1434–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lakshmanana AP, Harimaa M, Suzukib K, Soetiknoa V, Nagatac M, Nakamuraa T, Takahashid T, Sonee H, Kawachif H, Watanabea K (2013) The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: a differential role of unfolded protein response (UPR) signaling proteins. Int J Bioche Cell Biol 45:438–447

    Article  Google Scholar 

  5. Villarroel M, Garcia-Ramirez M, Corraliza L, Hernandez C, Simo R (2009) Effects of high glucose concentration on the barrier function and the expression of tight junction proteins in human retinal pigment epithelial cells. Exp Eye Res 89:913–920

    Article  CAS  PubMed  Google Scholar 

  6. Zhang KZ (2010) Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 3(1):33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR (2005) Type 2 diabetes mellitus as a conformational disease. JOP 6:287–302

    PubMed  Google Scholar 

  8. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sari FR, Widyantoro B, Thandavarayan RA, Harima M, Lakshmanan AP, Zhang SS, Muslin AJ, Suzuki K, Kodama M, Watanabe K (2011) Attenuation of CHOP-mediated myocardial apoptosis in pressure-overloaded dominant negative p38α mitogen-activated protein kinase mice. Cell Physiol Biochem 27:487–496

    Article  CAS  PubMed  Google Scholar 

  10. Lakshmanan AP, Thandavarayan RA, Palaniyandi SS, Sari FR, Meilei H, Giridharan VV, Soetikno V, Suzuki K, Kodama M, Watanabe K (2011) Modulation of AT-1R/CHOP-JNK-Caspase12 pathway by olmesartan treatment attenuates ER stress-induced renal apoptosis in streptozotocin-induced diabetic mice. Eur J Pharm Sci 44:627–634

    CAS  PubMed  Google Scholar 

  11. Liang SH, Zhang W, McGrath BC, Zhang P, Cavener DR (2006) PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 393:201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis 18(5):537–546

    Article  PubMed  Google Scholar 

  13. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136:261–265

    Article  CAS  PubMed  Google Scholar 

  14. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965

    Article  CAS  PubMed  Google Scholar 

  16. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hetz CA (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 9(12):2345–2355

    Article  CAS  PubMed  Google Scholar 

  20. Nemcova-Furstova V, Balusikova K, Sramek J, James RF, Kovar J (2013) Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell Physiol Biochem 31(2–3):277–289

    Article  PubMed  Google Scholar 

  21. Gu XM, Li K, Laybutt DR, He ML, Zhao HL, Chan JCN, Xu G (2010) Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci 87:724–732

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LL, Lai E, Teodoro T, Volchuk A (2009) GRP78, but not protein-disulfide isomerase, partially reverses hyperglycemia-induced inhibition of insulin synthesis and secretion in pancreatic β-cells. J Biol Chem 284(8):5289–5298

    Article  CAS  PubMed  Google Scholar 

  23. Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress–induced apoptosis. Methods Mol Biol 414:13–21

    CAS  PubMed  Google Scholar 

  24. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  25. Chandrasekaran K, Swaminathan K, Chatterjee S, Dey A (2010) Apoptosis in HepG2 cells exposed to high glucose. Toxicol In Vitro 24(2):387–396

    Article  CAS  PubMed  Google Scholar 

  26. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H (2002) Physiological Roles of ASK1-Mediated Signal Transduction in Oxidative Stress- and Endoplasmic Reticulum Stress-Induced Apoptosis: advanced Findings from ASK1 Knockout Mice. Antioxid Redox Signal 4(3):415–425

    Article  CAS  PubMed  Google Scholar 

  27. Nagata Y, Todokoro K (1999) Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 94(3):853–863

    CAS  PubMed  Google Scholar 

  28. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622

    Article  CAS  PubMed  Google Scholar 

  29. Deursen DV, Jansen H, Verhoeven AJM (2008) Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia 51:2078–2087

    Article  CAS  PubMed  Google Scholar 

  30. Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712

    Article  PubMed  Google Scholar 

  31. Zhao LH, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18(4):444–452

    Article  CAS  PubMed  Google Scholar 

  32. Yamagishi N, Ueda T, Mori A, Saito Y, Hatayama T (2012) Decreased expression of endoplasmic reticulum chaperone GRP78 in liver of diabetic mice. Biochem Biophys Res Commun 417:364–370

    Article  CAS  PubMed  Google Scholar 

  33. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  CAS  PubMed  Google Scholar 

  34. Zinszner H, Kuroda M, Wang XZ, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Stankovic MN, Mladenovic D, Ninkovic M, Duricic I, Sobajic S, Jorgacevic B, Luka S, Vukicevic RJ, Radosavljevic TS (2014) The effects of a-lipoic acid on liver oxidative stress and free fatty acid composition in methionine-choline deficient diet-induced NAFLD. J Med Food 17(2):254–261

    Article  CAS  PubMed  Google Scholar 

  36. Elshazly SM, El-Moselhy MA, Barakat W (2014) Insights in the mechanism underlying the protective effect of α-lipoic acid against acetaminophen-hepatotoxicity. Eur J Pharmacol 726:116–123

    Article  CAS  PubMed  Google Scholar 

  37. Kim MY, Kim EJ, Kim YN, Choi C, Lee BH (2011) Effects of α-lipoic acid and L-carnosine supplementation on antioxidant activities and lipid profiles in rats. Nutr Res Pract 5:421–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hahm JR, Noh HS, Ha JH, Roh GS, Kim DR (2014) Alpha-lipoic acid attenuates adipocyte differentiation and lipid accumulation in 3T3-L1 cells via AMPK-dependent autophagy. Life Sci 100(2):125–132

    Article  CAS  PubMed  Google Scholar 

  40. Hinson JA, Pumford NR, Roberts DW (1995) Mechanisms of acetaminophen toxicity: immunochemical detection of drug-protein adducts. Drug Metab Rev 27(1–2):73–92

    Article  CAS  PubMed  Google Scholar 

  41. Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C (2013) Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 57:114–125

    Article  CAS  PubMed  Google Scholar 

  42. Higa A, Chevet E (2012) Redox signaling loops in the unfolded protein response. Cell Signal 24(8):1548–1555

    Article  CAS  PubMed  Google Scholar 

  43. Glover-Cutter KM, Lin S, Blackwell TK (2013) Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet 9(9):e1003701. doi:10.1371/journal.pgen.1003701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Liu HB, Xiao YL, Xiong CM, Wei AH, Ruan JL (2011) Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur J Pharmacol 654:209–216

    Article  CAS  PubMed  Google Scholar 

  45. Pate T, Gores GJ, Kaufmann SH (1996) The role of proteases during apoptosis. FASEB J 10:587–597

    Google Scholar 

  46. Rojas-Rivera D, Caballero B, Zamorano S, Lisbona F, Hetz C (2010) Alternative functions of the BCL-2 protein family at the endoplasmic reticulum. Adv Exp Med Biol 687:33–47

    Article  CAS  PubMed  Google Scholar 

  47. Ghribi O, DeWitt DA, Forbes MS, Herman MM, Savory J (2001) Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  48. Korsmeyer SJ, Yin XM, Oltvai ZN, Veis-Novack DJ, Linette GP (1995) Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta 1271(1):63–66

    Article  PubMed  Google Scholar 

  49. Roux PP, Blenis J (2004) ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions. Microbiol Mol Biol Rev 68(2):320–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Xia ZG, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  51. Szydlowska K, Gozdz A, Dabrowski M, Zawadzka M, Kaminska B (2010) Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes: neuroprotective effect of FK506. J Neurochem 113(4):904–918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81470568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Additional information

Qiaoling Jiang and Yujun Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Yuan, Y., Zhou, J. et al. Apoptotic events induced by high glucose in human hepatoma HepG2 cells involve endoplasmic reticulum stress and MAPK’s activation. Mol Cell Biochem 399, 113–122 (2015). https://doi.org/10.1007/s11010-014-2238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2238-5

Keywords

Navigation