Skip to main content

Advertisement

Log in

Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of renal disease. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. Herein, we investigated the protective effect of hydrogen-rich water (HW) against renal injury in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar–Kyoto rats were randomized into HW-treated (1.3 ± 0.2 mg/l for 3 months, drinking) and vehicle-treated group. Although treatment with HW had no significant effect on blood pressure, it significantly ameliorated renal injury in SHR. Treatment with HW lowered reactive oxygen species formation, upregulated the activities of superoxide dismutase, glutathione peroxidase, glutathione-S-epoxide transferase, and catalase, and suppressed NADPH oxidase activity. Treatment with HW in SHR depressed pro-inflammatory cytokines expression including TNF-α, IL-6, IL-1β, and macrophage chemoattractant protein 1, which might be mediated by suppressing nuclear factor-κB activation. In addition, treatment with HW had protective effect on mitochondrial function including adenosine triphosphate formation and membrane integrity in SHR. In conclusion, consumption of HW is a promising strategy to alleviate renal injury as a supplement for anti-hypertensive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kannel WB (2000) Review of recent Framingham study hypertension research. Curr Hypertens Rep 2:239–240

    Article  CAS  PubMed  Google Scholar 

  2. Elks CM, Mariappan N, Haque M, Guggilam A, Majid DS, Francis J (2009) Chronic NF-kB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 296:F298–F305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wilcox CS (2005) Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol 289:R913–R935

    Article  CAS  PubMed  Google Scholar 

  4. Ge P, Zhao J, Li S, Ding Y, Yang F, Luo Y (2012) Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress. Neurol Res 34:187–194

    CAS  PubMed  Google Scholar 

  5. Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, Chen T, Zhou J, Fei Z (2010) Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 1354:196–205

    Article  CAS  PubMed  Google Scholar 

  6. Abe T, Li XK, Yazawa K, Hatayama N, Xie L, Sato B, Kakuta Y, Tsutahara K, Okumi M, Tsuda H, Kaimori JY, Isaka Y, Natori M, Takahara S, Nonomura N (2012) Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury. Transplantation 94:14–21

    Article  CAS  PubMed  Google Scholar 

  7. Noda K, Tanaka Y, Shigemura N, Kawamura T, Wang Y, Masutani K, Sun X, Toyoda Y, Bermudez CA, Nakao A (2012) Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl Int 25:1213–1222

    Article  CAS  PubMed  Google Scholar 

  8. Ohno K, Ito M, Ichihara M, Ito M (2012) Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev 2012:353152

    Article  PubMed Central  PubMed  Google Scholar 

  9. Guo JD, Li L, Shi YM, Wang HD, Hou SX (2013) Hydrogen water consumption prevents osteopenia in ovariectomized rats. Br J Pharmacol 168:1412–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yu YS, Zheng H (2012) Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem 365:233–242

    Article  CAS  PubMed  Google Scholar 

  11. Zheng H, Yu YS (2012) Chronic hydrogen-rich saline treatment attenuates vascular dysfunction in spontaneous hypertensive rats. Biochem Pharmacol 83:1269–1277

    Article  CAS  PubMed  Google Scholar 

  12. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  PubMed  Google Scholar 

  13. Yu YS, Xie HH, Li L, Song SW, Han P, Cai GJ, Su DF (2010) Effects of low-dose ketanserin on atherosclerosis in rats and rabbits. Can J Physiol Pharmacol 88:1054–1060

    Article  CAS  PubMed  Google Scholar 

  14. Kopkan L, Castillo A, Navar LG, Majid DSA (2006) Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol 290:F80–F86

    Article  CAS  PubMed  Google Scholar 

  15. Kopkan L, Majid DSA (2006) Enhanced superoxide activity modulates renal function in NO-deficient hypertensive rats. Hypertension 47:568–572

    Article  CAS  PubMed  Google Scholar 

  16. Kimura K, Tojo A, Matsuoka H, Sugimoto T (1991) Renel arteriolar diameters in spontaneously hypertensive rats: vascular cast study. Hypertension 18:101–110

    Article  CAS  PubMed  Google Scholar 

  17. Li YL, Gao L, Zucker IH, Schultz HD (2007) NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75:546–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mariappan N, Soorappan RN, Haque M, Sriramula S, Francis J (2007) TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction, restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 293:H2726–H2737

    Article  CAS  PubMed  Google Scholar 

  19. Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Harrison DG, Gongora MC, Guzik TJ, Widder J (2007) Oxidative stress and hypertension. J Am Soc Hypertens 1:30–44

    Article  PubMed  Google Scholar 

  21. Laakso J, Mervaala E, Himberg JJ (1998) Increased kidney xanthine oxidoreductase activity in salt induced experimental hypertension. Hypertension 32:902–906

    Article  CAS  PubMed  Google Scholar 

  22. Maher P, Salgado KF, Zivin JA, Lapchak PA (2007) A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res 1173:117–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wilcox CS (2002) Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160–166

    Article  PubMed  Google Scholar 

  24. Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM, Anderson PG (2000) Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem 275:20474–20479

    Article  CAS  PubMed  Google Scholar 

  25. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32:370–374

    Article  CAS  PubMed  Google Scholar 

  26. Atlante A, Seccia TM, Pierro P, Vulpis V, Marra E, Pirrelli A, Passarella S (1998) ATP synthesis and export in heart left ventricle mitochondria from spontaneously hypertensive rat. Int J Mol Med 1:709–716

    CAS  PubMed  Google Scholar 

  27. Doroshchuk AD, Postnov A, Afanas’eva GV, Budnikov E, Postnov IuV (2004) Decreased ATP-synthesis ability of brain mitochondria in spontaneously hypertensive rats. Kardiologiia 44:64–65

    CAS  PubMed  Google Scholar 

  28. de Cavanagh EM, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F (2006) Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol 290:R1616–R1625

    Article  PubMed  Google Scholar 

  29. Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 15:152–158

    CAS  PubMed  Google Scholar 

  30. Sun L, Gao YH, Tian DK, Zheng JP, Zhu CY, Ke Y, Bian K (2006) Inflammation of different tissues in spontaneously hypertensive rats. Sheng Li Xue Bao 58:318–323

    CAS  PubMed  Google Scholar 

  31. Janssen-Heininger YMW, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Radic Biol Med 28:1317–1327

    Article  CAS  PubMed  Google Scholar 

  32. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCray PB, Ritchie TC, Hunninghake GW, Zandi E, Engelhardt JF (2001) Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J Biol Chem 276:30188–30198

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X (2011) Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol 148:91–95

    Article  PubMed  Google Scholar 

  35. Wang Y, Jing L, Zhao XM, Han JJ, Xia ZL, Qin SC, Wu YP, Sun XJ (2011) Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model. Respir Res 12:26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Qiu XC, Jin YC, Sun Y, Luo PF, Fu JF, Chen B, Xia ZF (2010) Effect of hydrogen-rich saline on blood pressure and antioxidant ability of lung tissue in scalded rats following delayed resuscitation. Zhonghua Shao Shang Za Zhi 26:435–438

    CAS  PubMed  Google Scholar 

  37. Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MW (2014) Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem 289:2873–2879

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Qi Zhang or Xiao-Hui Miao.

Additional information

Hai-Guang Xin and Bei-Bei Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, HG., Zhang, BB., Wu, ZQ. et al. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol Cell Biochem 392, 117–124 (2014). https://doi.org/10.1007/s11010-014-2024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2024-4

Keywords

Navigation