Skip to main content
Log in

Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs), the most widely used cell source for cartilage tissue engineering, are multipotent cells which have been shown to differentiate into various mesenchyme-lineage cell types including chondrocytes. However, the molecular mechanisms controlling the chondrogenic differentiation of MSCs remain to be fully elucidated. It has been demonstrated that Wnt signaling involves regulating chondrogenesis and MSC differentiation. The aim of the present study was to investigate the role of Wnt11, a member of noncanonical Wnts, in MSCs during chondrogenic differentiation. We observed that overexpression of Wnt11 inhibited proliferation of MSCs and caused a G0/G1 cell cycle arrest. The expression level of chondrogenic markers, aggrecan and Collagen II, was significantly increased in MSCs transduced with Wnt11 as compared with non-transduced cells or MSCs transduced with the empty lentiviral vector. Furthermore, ectopic expression of Wnt11 stimulated gene expression of chondrogenic regulators, SRY-related gene 9, Runt-related transcription factor 2, and Indian hedgehog. Finally, Wnt11 overexpression promoted chondrogenic differentiation of MSCs in synergism with TGF-β. Collectively, these results indicate that Wnt11 plays a crucial role in regulating MSC chondrogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Loeser RF (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54:1357–1360. doi:10.1002/art.21813

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812

    PubMed  Google Scholar 

  3. Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthr Cartil 7:15–28. doi:10.1053/joca.1998.0159

    Article  PubMed  CAS  Google Scholar 

  4. Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M (2011) Cartilage tissue engineering. Endocr Dev 21:102–115. doi:10.1159/000328140

    Article  PubMed  CAS  Google Scholar 

  5. Hwang NS, Varghese S, Elisseeff J (2007) Cartilage tissue engineering: directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. Methods Mol Biol 407:351–373. doi:10.1007/978-1-59745-536-7_24

    Article  PubMed  CAS  Google Scholar 

  6. Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43:286–289. doi:10.1016/j.biocel.2010.12.006

    Article  PubMed  CAS  Google Scholar 

  7. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  PubMed  CAS  Google Scholar 

  8. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  9. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  10. Li J, Zhao Z, Liu J, Huang N, Long D, Wang J, Li X, Liu Y (2010) MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway. Cell Prolif 43:333–343. doi:10.1111/j.1365-2184.2010.00682.x

    Article  PubMed  CAS  Google Scholar 

  11. Huang CY, Reuben PM, D’Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol 278:428–436. doi:10.1002/ar.a.20010

    Article  PubMed  Google Scholar 

  12. Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323. doi:10.1634/stemcells.22-3-313

    Article  PubMed  CAS  Google Scholar 

  13. Jian H, Shen X, Liu I, Semenov M, He X, Wang XF (2006) Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20:666–674. doi:10.1101/gad.1388806

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Longobardi L, O’Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL, Spagnoli A (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21:626–636. doi:10.1359/jbmr.051213

    Article  PubMed  CAS  Google Scholar 

  15. Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135:789–798. doi:10.1242/dev.016865

    Article  PubMed  CAS  Google Scholar 

  16. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398. doi:10.1038/nrc2389

    Article  PubMed  CAS  Google Scholar 

  17. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi:10.1146/annurev.cellbio.20.010403.113126

    Article  PubMed  CAS  Google Scholar 

  18. Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23:111–116. doi:10.1080/08977190500125746

    Article  PubMed  CAS  Google Scholar 

  19. Pandur P, Lasche M, Eisenberg LM, Kuhl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418:636–641. doi:10.1038/nature00921

    Article  PubMed  CAS  Google Scholar 

  20. Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S (2009) Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns 9:215–223. doi:10.1016/j.gep.2008.12.009

    Article  PubMed  CAS  Google Scholar 

  21. Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93:1210–1230. doi:10.1002/jcb.20284

    Article  PubMed  CAS  Google Scholar 

  22. Qu F, Wang J, Xu N, Liu C, Li S, Wang N, Qi W, Li H, Li C, Geng Z, Liu Y (2013) Wnt3a modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs. Front Biosci 18:493–503

    Article  CAS  Google Scholar 

  23. Rudnicki JA, Brown AM (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol 185:104–118. doi:10.1006/dbio.1997.8536

    Article  PubMed  CAS  Google Scholar 

  24. Ryu JH, Chun JS (2006) Opposing roles of Wnt-5a and Wnt-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J Biol Chem 281:22039–22047. doi:10.1074/jbc.M601804200

    Article  PubMed  CAS  Google Scholar 

  25. Xu J, Wang W, Ludeman M, Cheng K, Hayami T, Lotz JC, Kapila S (2008) Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Eng Part A 14:667–680. doi:10.1089/tea.2007.0272

    Article  PubMed  CAS  Google Scholar 

  26. Wu B, Ma X, Zhu D, Liu Y, Sun Z, Liu S, Xue B, Du M, Yin X (2013) Lentiviral delivery of biglycan promotes proliferation and increases osteogenic potential of bone marrow-derived mesenchymal stem cells in vitro. J Mol Histol 44:423–431. doi:10.1007/s10735-013-9497-4

    Article  PubMed  CAS  Google Scholar 

  27. Tominaga H, Maeda S, Miyoshi H, Miyazono K, Komiya S, Imamura T (2009) Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells. J Bone Miner Metab 27:36–45. doi:10.1007/s00774-008-0003-0

    Article  PubMed  CAS  Google Scholar 

  28. Buhrmann C, Mobasheri A, Matis U, Shakibaei M (2010) Curcumin mediated suppression of nuclear factor-kappaB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther 12:R127. doi:10.1186/ar3065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Wei H, Shen G, Deng X, Lou D, Sun B, Wu H, Long L, Ding T, Zhao J (2013) The role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and chondrogenesis. Cell Tissue Bank 14(4):699–706. doi:10.1007/s10561-012-9354-9

    Article  PubMed  CAS  Google Scholar 

  30. Kawakami Y, Rodriguez-Leon J, Izpisua Belmonte JC (2006) The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 18:723–729. doi:10.1016/j.ceb.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  31. Church V, Nohno T, Linker C, Marcelle C, Francis-West P (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115:4809–4818

    Article  PubMed  CAS  Google Scholar 

  32. Du SJ, Purcell SM, Christian JL, McGrew LL, Moon RT (1995) Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 15:2625–2634

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Xiang G, Yang Q, Wang B, Sekiya N, Mu X, Tang Y, Chen CW, Okada M, Cummins J, Gharaibeh B, Huard J (2011) Lentivirus-mediated Wnt11 gene transfer enhances Cardiomyogenic differentiation of skeletal muscle-derived stem cells. Mol Ther 19:790–796. doi:10.1038/mt.2011.5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. He Z, Li H, Zuo S, Pasha Z, Wang Y, Yang Y, Jiang W, Ashraf M, Xu M (2011) Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells Dev 20:1771–1778. doi:10.1089/scd.2010.0380

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Ogawa R, Mizuno H, Watanabe A, Migita M, Shimada T, Hyakusoku H (2004) Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun 313:871–877

    Article  PubMed  CAS  Google Scholar 

  37. Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178. doi:10.1038/ng0697-174

    Article  PubMed  CAS  Google Scholar 

  38. Xie WF, Zhang X, Sakano S, Lefebvre V, Sandell LJ (1999) Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J Bone Miner Res 14:757–763. doi:10.1359/jbmr.1999.14.5.757

    Article  PubMed  CAS  Google Scholar 

  39. Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170

    Article  PubMed  CAS  Google Scholar 

  40. Wang Y, Belflower RM, Dong YF, Schwarz EM, O’Keefe RJ, Drissi H (2005) Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J Bone Miner Res 20:1624–1636. doi:10.1359/JBMR.050516

    Article  PubMed  CAS  Google Scholar 

  41. Zhou S, Eid K, Glowacki J (2004) Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 19:463–470. doi:10.1359/JBMR.0301239

    Article  PubMed  CAS  Google Scholar 

  42. Maye P, Zheng J, Li L, Wu D (2004) Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway. J Biol Chem 279:24659–24665. doi:10.1074/jbc.M311724200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2014_1963_MOESM1_ESM.tif

Supplemental Fig. 1 Quantitative real-time PCR analysis of cardiomyocyte markers, GATA-4, BNP, and α-actinin. (TIFF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, E., Yang, M. et al. Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-β. Mol Cell Biochem 390, 123–131 (2014). https://doi.org/10.1007/s11010-014-1963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1963-0

Keywords

Navigation