Skip to main content
Log in

Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Accumulating data indicate that cancer stem cells play an important role in tumorigenesis and are underlying cause of tumor recurrence and metastasis, specifically in chronic myeloid leukemia (CML). We aim to detect the miRNAs that are correlated with the cancer stem cells in CML to provide theoretical basis for clinical application. We first analyzed microRNA expression profiles of CML leukemia patients compared with normal controls by microarray analysis and validated the results by real-time PCR. A single microRNA signature classified CML from normal was detected. We also determined the absolute copy numbers of these three microRNAs in normal adults. The results showed that three microRNAs (miR-150, miR-23a, and miR-130a) were identified to significantly decrease in expanded 38 CML patients compared with 90 normal controls. Molecular and statistical analysis showed that the decreased microRNAs were significant in clinical analysis. All these results indicated that those three microRNAs could act as a tumor suppressor and their decreased expression might be one of the causes of leukemia. Accordingly, clarifying their regulatory mechanisms might delineate their potentials as drug targets of gene therapy for CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CML:

Chronic myeloid leukemia

Ph:

Philadelphia

AP:

Ammonium persulfate

PHA:

Polyhydroxyalkanoates

MNC:

Mononuclear cell

References

  1. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5:2862–2866

    Article  PubMed  CAS  Google Scholar 

  2. Jørgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109:4016–4019

    Article  PubMed  CAS  Google Scholar 

  3. Jørgensen HG, Copland M, Allan EK, Jiang X, Eaves A, Eaves C (2006) Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 12:626–633

    Article  PubMed  CAS  Google Scholar 

  4. Xishan Z, Xinna Z, Baoxin H, Jun R (2013) Impaired immunomodulatory function of chronic myeloid leukemia cancer stem cells and the possible mechanism involved in it. Cancer Immunol Immunother 62(4):689–703

    Article  PubMed  CAS  Google Scholar 

  5. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed Central  PubMed  Google Scholar 

  6. Fridman R, Toth M, Chvyrkova I, Meroueh S, Mobashery S (2003) Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22:153–166

    Article  PubMed  CAS  Google Scholar 

  7. Xishan Z, Xu Z, Lawei Y, Gang L (2012) Hemangioblastic characteristics of cancer stem cells in chronic myeloid leukemia. Clin Lab 58(7–8):607–613

    PubMed  Google Scholar 

  8. Paupert J, Mansat-De Mas V, Demur C (2008) Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7(8):1047–1053

    Article  PubMed  CAS  Google Scholar 

  9. Fatica A, Fazi F (2013) MicroRNA-regulated pathways in hematological malignancies: how to avoid cells playing out of tune. Int J Mol Sci 14(10):20930–20953

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Redondo-Muñoz J, Escobar-Díaz E, Samaniego R (2006) MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 108(9):3143–3151

    Article  PubMed  CAS  Google Scholar 

  11. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells. Clin Cancer Res 12(6):1828–1838

    Article  PubMed  CAS  Google Scholar 

  12. Janowska-Wieczorek A, Majka M, Marquez-Curtis L, Wertheim JA, Turner AR, Ratajczak MZ (2002) BCR–ABL-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants. Leukemia 16(6):1160–1166

    Article  PubMed  CAS  Google Scholar 

  13. Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T (2003) Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23(3):681–691

    PubMed  CAS  Google Scholar 

  14. Bruchova H, Borovanova T, Klamova H, Brdicka R (2002) Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43(6):1289–1295

    Article  PubMed  CAS  Google Scholar 

  15. Ries C, Loher F, Zang C, Ismair MG, Petrides PE (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 5(5):1115–1124

    PubMed  CAS  Google Scholar 

  16. Guo P, Nie Q, Lan J, Ge J, Qiu Y, Mao Q (2013) C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem Biophys Res Commun 441(1):186–190

    Article  PubMed  CAS  Google Scholar 

  17. Miska EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sun Y, Koo S, White N et al (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Teichler S, Illmer T, Roemhild J, Ovcharenko D, Stiewe T, Neubauer A (2011) MicroRNA29a regulates the expression of the nuclear oncogene Ski. Blood 118(7):1899–1902

    Article  PubMed  CAS  Google Scholar 

  20. Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Liang RQ, Li W, Li Y et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Thomson JM, Parker J, Perou CM et al (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47–53

    Article  PubMed  CAS  Google Scholar 

  23. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161

    Article  PubMed  CAS  Google Scholar 

  24. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Pouladi N, Kouhsari SM, Feizi MH, Gavgani RR, Azarfam P (2013) Overlapping region of p53/Wrap53 transcripts: mutational analysis and sequence similarity with microRNA-4732-5p. Asian Pac J Cancer Prev 14(6):3503–3507

    Article  PubMed  Google Scholar 

  26. Wang L, Li B, Li L, Wang T (2013) MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells. Asian Pac J Cancer Prev 14(6):3499–3502

    Article  PubMed  Google Scholar 

  27. Xing HJ, Li YJ, Ma QM, Wang AM, Wang JL, Sun M, Jian Q, Hu JH, Li D, Wang L (2013) Identification of microRNAs present in congenital heart disease associated copy number variants. Eur Rev Med Pharmacol Sci 17(15):2114–2120

    PubMed  Google Scholar 

  28. Li X, Zhang X, Wang T, Sun C, Jin T, Yan H, Zhang J, Li X, Geng T, Chen C, Ma A, Li S (2013) Regulation by bisoprolol for cardiac microRNA expression in a rat volume-overload heart failure model. J Nanosci Nanotechnol 13(8):5267–5275

    Article  PubMed  CAS  Google Scholar 

  29. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Cheng AM, Byrom MW, Shelton J et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10):1079–1083

    Article  PubMed  CAS  Google Scholar 

  32. Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Karaayvaz M, Zhai H, Ju J (2013) miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis 4:e659. doi:10.1038/cddis.2013.193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Zhang J, Zhang D, Wu GQ, Feng ZY, Zhu SM (2013) Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int 12(3):305–309

    Article  PubMed  Google Scholar 

  35. Ma D, Tao X, Gao F, Fan C, Wu D (2012) miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol Lett 4(3):483–488

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM, Mattison JA, de Cabo R, Suárez Y, Fernández-Hernando C (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33(11):2339–2352. doi:10.1128/MCB.01714-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C, Wang Z (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288(19):13748–13761. doi:10.1074/jbc.M112.381392

    Article  PubMed  CAS  Google Scholar 

  38. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Krek A (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  40. Grun D, Wang Y, Langenberger D et al (2005) microRNA Target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research is funded by the National Science Foundation (81100366) and Beijing Nova Programme (2013041).

Conflict of interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Lin, Z., Du, J. et al. Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia. Mol Cell Biochem 390, 75–84 (2014). https://doi.org/10.1007/s11010-013-1958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1958-2

Keywords

Navigation