Skip to main content

Advertisement

Log in

Nuclear factor-κB signaling pathway is involved in phospholipase Cε-regulated proliferation in human renal cell carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phospholipase Cε (PLCε), a downstream effector of small GTPase superfamily, has been identified to play a crucial role in tumorigenesis. Previously, our studies have showed that PLCε promotes proliferation of renal cell carcinoma (RCC) cells. However, the molecular mechanisms by which PLCε enhances the survival phenotype of RCC cells are still not fully instructed. In the present study, we first demonstrated that PLCε was highly expressed and had a close correlation with Ki67 protein expression in RCC tissue samples. Further, we found that downregulation of PLCε expression repressed growth and induced apoptosis in RCC cells. In addition, we reported a mechanism by which knockdown of PLCε gene potently suppressed the nuclear factor kappa (NF-κB) signaling pathway through action on inhibitor of κB kinase. Moreover, silencing PLCε gene decreased vascular endothelial growth factor (VEGF) expression, which was a downstream growth factor of NF-κB signaling pathway. Finally, downregulation of VEGF was severely enhanced by treatment cells with NF-κB specific inhibitor BAY11-7028 in PLCε knockdown cells. Taken together, these findings suggest that PLCε promotes RCC cell growth via NF-κB-mediated upregulation of VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drucker BJ (2005) Renal cell carcinoma: current status and future prospects. Cancer Treat Rev 31(7):536–545

    Article  PubMed  Google Scholar 

  2. Ahmedin Jemal DVM, Rebecca Siegel MPH, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59(4):225–249. doi:10.3322/caac.20006

    Article  PubMed  Google Scholar 

  3. Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem 276(4):2752–2757

    Article  CAS  PubMed  Google Scholar 

  4. Wing MR, Bourdon DM, Harden TK (2003) PLC-epsilon: a shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv 3(5):273–280

    Article  CAS  PubMed  Google Scholar 

  5. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C*. Annu Rev Biochem 70(1):281–312. doi:10.1146/annurev.biochem.70.1.281

    Article  CAS  PubMed  Google Scholar 

  6. Bai Y, Edamatsu H, Maeda S, Saito H, Suzuki N, Satoh T, Kataoka T (2004) Crucial role of phospholipase Cε in chemical carcinogen-induced skin tumor development. Cancer Res 64(24):8808–8810

    Article  CAS  PubMed  Google Scholar 

  7. Burguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P (2006) Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase Cϵ-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281(20):14026–14040

    Article  Google Scholar 

  8. Wang LD, Zhou FY, Li XM et al (2010) Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat Genet 42(9):759–763. doi:10.1038/ng.648

    Article  CAS  PubMed  Google Scholar 

  9. Guo YC, Luo CL, Cai XZ, WU XH (2008) Expression and clinical significance of phospholipase C-epsilon gene in transitional cell carcinoma of bladder. Chin J Clin Lab Sci 26(1):41–52

    Google Scholar 

  10. Ling Y, Chunli L, Xiaohou W, Qiaoling Z (2011) Involvement of the PLCε/PKCα pathway in human BIU-87 bladder cancer cell proliferation. Cell Biol Int 35(10):1031–1036. doi:10.1042/CBI20090101

    Article  PubMed  Google Scholar 

  11. Cheng H, Luo C, Wu X, Zhang Y, He Y, Wu Q, Xia Y, Zhang J (2011) shRNA targeting PLCε inhibits bladder cancer cell growth in vitro and in vivo. Urology 78(2):474. doi:10.1016/j.urology e7–474

    Article  PubMed  Google Scholar 

  12. Ou L, Guo Y, Luo C, Wu X, Zhao Y, Cai X (2010) RNA interference suppressing PLCE1 gene expression decreases invasive power of human bladder cancer T24 cell line. Cancer Genet Cytogenet 200(2):110–119. doi:10.1016/j.cancergencyto

    Article  CAS  PubMed  Google Scholar 

  13. Gilmore TD (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25(51):6680–6684

    Article  CAS  PubMed  Google Scholar 

  14. Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446(5):475–482

    Article  CAS  PubMed  Google Scholar 

  15. Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436

    Article  CAS  PubMed  Google Scholar 

  16. Richmond Ann (2002) NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol 2(9):664–674. doi:10.1038/nri887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947

    Article  CAS  PubMed  Google Scholar 

  18. He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M (2010) Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17(3):286–297. doi:10.1016/j.ccr

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Umar S, Sarkar S, Cowey S, Singh P (2008) Activation of NF-κB is required for mediating proliferative and antiapoptotic effects of progastrin on proximal colonic crypts of mice, in vivo. Oncogene 27(42):5599–5611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Oya M, Takayanagi A, Horiguchi A, Mizuno R, Ohtsubo M, Marumo K, Shimizu N, Murai M (2003) Increased nuclear factor-κB activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24(3):377–384

    Article  CAS  PubMed  Google Scholar 

  21. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. doi:10.1038/nature04483

    Article  CAS  PubMed  Google Scholar 

  22. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  23. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR (1992) Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 3(2):211–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, Pinedo HM (1997) Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 3(12 Pt 1):2187–2190

    CAS  PubMed  Google Scholar 

  25. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl. 3):11–16. doi:10.1159/000088479

    Article  CAS  PubMed  Google Scholar 

  26. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhang X, Yamashita M, Uetsuki H, Kakehi Y (2002) Angiogenesis in renal cell carcinoma: evaluation of microvessel density, vascular endothelial growth factor and matrix metalloproteinases. Int J Urol 9(9):509–514

    Article  CAS  PubMed  Google Scholar 

  28. Yildiz E, Gokce G, Kilicarslan H, Ayan S, Goze OF, Gultekin EY (2004) Prognostic value of the expression of Ki-67, CD44 and vascular endothelial growth factor, and microvessel invasion, in renal cell carcinoma. BJU Int 93(7):1087–1093

    Article  CAS  PubMed  Google Scholar 

  29. Jacobsen J, Grankvist K, Rasmuson T, Bergh A, Landberg G, Ljungberg B (2004) Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int 93(3):297–302

    Article  CAS  PubMed  Google Scholar 

  30. Xu B, He Y, Wu X, Luo C, Liu A, Zhang J (2012) Exploration of the correlations between interferon-γ in patient serum and HEPACAM in bladder transitional cell carcinoma, and the interferon-γ mechanism inhibiting BIU-87 proliferation. J Urol 188(4):1346–1353. doi:10.1016/j.juro.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Luo C, Wu X, Du H, Song X, Fan Y (2013) HepaCAM and p-mTOR are closely correlated in transitional cell carcinoma of bladder and expression of hepaCAM inhibits proliferation via an AMPK/mTOR-dependent pathway in human bladder cancer cells. J Urol. doi:10.1016/j.juro.2013.05.013

    Google Scholar 

  32. Yun S, Hong WP, Choi JH, Yi KS, Chae SK, Ryu SH, Suh PG (2008) Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation. J Biol Chem 283(1):341–349

    Article  CAS  PubMed  Google Scholar 

  33. Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE (2000) Role of the IkappaB kinase complex in oncogenic Ras- and Raf-mediated transformation of rat liver epithelial cells. Mol Cell Biol 20(15):5381–5391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S (2005) Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem 280(11):10564–10571

    Article  CAS  PubMed  Google Scholar 

  35. Fan S, Meng Q, Laterra JJ, Rosen EM (2007) Ras effector pathways modulate scatter factor-stimulated NF-kappaB signaling and protection against DNA damage. Oncogene 26(33):4774–4796

    Article  CAS  PubMed  Google Scholar 

  36. Arai Y, Nonomura N, Nakai Y, Nishimura K, Oka D, Shiba M, Nakayama M, Takayama H, Mizutani Y, Miki T, Okuyama A (2008) The growth-inhibitory effects of dexamethasone on renal cell carcinoma in vivo and in vitro. Cancer Invest 26(1):35–40

    Article  CAS  PubMed  Google Scholar 

  37. Oka D, Nishimura K, Shiba M, Nakai Y, Arai Y, Nakayama M, Takayama H, Inoue H, Okuyama A, Nonomura N (2007) Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB. Int J Cancer 120(12):2576–2581

    Article  CAS  PubMed  Google Scholar 

  38. Paradis V, Ben Lagha N, Zeimoura L, Blanchet P, Eschwege P, Ba N, Benoît G, Jardin A, Bedossa P (2000) Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch 436(4):351–356

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Edamatsu H, Kitazawa R, Kitazawa S, Kataoka T (2009) Phospholipase Cepsilon promotes intestinal tumorigenesis of Apc(Min/+) mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30(8):1424–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of P. R. China (Grant No. 81072086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Li Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Hf., Ou, Lp., Song, Xd. et al. Nuclear factor-κB signaling pathway is involved in phospholipase Cε-regulated proliferation in human renal cell carcinoma cells. Mol Cell Biochem 389, 265–275 (2014). https://doi.org/10.1007/s11010-013-1948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1948-4

Keywords

Navigation