Skip to main content
Log in

Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell growth. Size-exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of 32P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady-state kinetic analysis gave the following results: K m(streptomycin) of 0.38 ± 0.13 mM, K m(ATP) of 1.03 ± 0.1 mM, V max of 3.2 ± 1.1 μmol/min/mg, and k cat of 1.7 ± 0.6 s−1. Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones D, Metzger HJ, Schatz A, Waksman SA (1944) Control of gram-negative bacteria in experimental animals by streptomycin. Science 100:103–105

    Article  CAS  PubMed  Google Scholar 

  2. Carter AP, Clemons WM, Broderson DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  CAS  PubMed  Google Scholar 

  3. Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503

    Article  CAS  PubMed  Google Scholar 

  5. Piepersberg W (1996) Streptomycin and related aminoglycosides. In: Vining LC, Stuttard C (eds) Genetics and biochemistry of antibiotic production. Butterworth Heinemann, Halifax, pp 531–570

    Google Scholar 

  6. Distler J, Mansouri K, Mayer G, Stockmann M, Piepersberg W (1992) Streptomycin biosynthesis and its regulation in Streptomycetes. Gene 115:105–111

    Article  CAS  PubMed  Google Scholar 

  7. Lim C-K, Smith MCM, Petty J, Baumberg S, Wootton JC (1989) Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases. J Gen Microbiol 135:3289–3302

    CAS  PubMed  Google Scholar 

  8. Sugiyama M, Sakamoto M, Mochizuki H, Nimi O, Nomi R (1983) Purification and characterization of streptomycin 6-kinase, an enzyme implicated in self-protection of a streptomycin-producing micro-organism. J Gen Microbiol 129:1683–1687

    CAS  PubMed  Google Scholar 

  9. Heinzel P, Werbitzky O, Distler J, Piepersbert W (1988) A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3″-phosphotransferase. Relationships between antibiotic and protein kinases. Arch Microbiol 150:184–192

    Article  CAS  PubMed  Google Scholar 

  10. Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Mazodier P, Cossart P, Giraud E, Gasser F (1985) Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13:195–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Scholz P, Haring V, Wittmann-Liebold B, Ashman D, Bagdasarian M, Scherzinger E (1989) Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271–288

    Article  CAS  PubMed  Google Scholar 

  13. Sundin GW, Bender CL (1993) Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. Syringae. Appl Environ Microbiol 59:1018–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chiou C-S, Jones AL (1993) Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175:732–740

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chiou C-S, Jones AL (1995) Expression and identification of the strAstrB gene pair from streptomycin-resistant Erwinia amylovora. Gene 152:47–51

    Article  CAS  PubMed  Google Scholar 

  16. Sundin GW, Bender CL (1996) Dissemination of the strAstrB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 5:133–143

    Article  CAS  PubMed  Google Scholar 

  17. Sundin GW (2000) Examination of base pair variants of the strAstrB streptomycin resistance genes from bacterial pathogens of humans, animals and plants. J Antimicrob Chemother 46:848–849

    Article  CAS  PubMed  Google Scholar 

  18. Pezella C, Ricci A, DiGiannatale E, Luzzi I, Carattoli A (2004) Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob Agents Chemother 48:903–908

    Article  Google Scholar 

  19. Shaw PC, Liang AC, Kam KC, Ling JM (1996) Presence of strAstrB gene within a streptomycin-resistance operon in a clinical isolate of Shigella flexneri. Pathology 28:356–358

    Article  CAS  PubMed  Google Scholar 

  20. Collins AC III, Ashenafi M, Saunders AA, Byrnes WM (2007) Cloning and expression of streptomycin-inactivating enzymes APH(6)-Ia and APH(6)-Id. Cell Mol Biol 53:74–79

    CAS  PubMed  Google Scholar 

  21. National Committee for Clinical Laboratory Standards, NCCLS (1990) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M7-A2, 2nd edn. NCCLS, Villanova

    Google Scholar 

  22. National Committee for Clinical Laboratory Standards (1990) Performance standards for antimicrobial disk susceptibility tests. Approved Standard M2-A4, 4th edn. NCCLS, Villanova

    Google Scholar 

  23. Michael SS, Duch M, Paludan K, Jorgensen P, Finn SP (1992) Measurement of hygromycin B phosphotransferase activity in crude mammalian cell extracts by a simple dot-blot assay. Gene 112:257–260

    Article  Google Scholar 

  24. Luedtke NW, Schepartz A (2005) Lanthanide-mediated phosphoester hydrolysis and phosphate elimination from phosphopeptides. Chem Commun 43:5426–5428

    Article  Google Scholar 

  25. Martindale W (1982) The extra pharmacopoeia, 28th edn. Pharmaceutical Press, London

    Google Scholar 

  26. Collins III AC (2007b) Cloning, sequencing and expression of the gene for streptomycin-inactivating enzyme APH(6)-Ia from Streptomyces griseus. Dissertation, Howard University

  27. Perlin MH, McCarty SC, Greer JP (1988) Coupled spectrofluorometric assay for aminoglycoside phosphotransferases. Anal Biochem 171:145–149

    Article  CAS  PubMed  Google Scholar 

  28. Fromm HJ, Zewe V (1962) Kinetic studies of yeast hexokinase. J Biol Chem 237:3027–3032

    CAS  PubMed  Google Scholar 

  29. Siregar JJ, Miroshnikov K, Mobashery S (1995) Purification, characterization, and investigation of the mechanism of aminoglycoside 3′-phosphotransferase type Ia. Biochemistry 34:12681–12688

    Article  CAS  PubMed  Google Scholar 

  30. van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H, Collard J-M, Guillaume G, Karagouni AD, Nikolakopoulou TL, van Elsas JD (2002) Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288

    Article  PubMed  Google Scholar 

  31. Ramón-García S, Otal I, Martín C, Gómez-Lus R, Aínsa JA (2006) Novel streptomycin resistance gene from Mycobacterium fortuitum. Antimicrob Agents Chemother 50:3920–3922

    Article  PubMed Central  PubMed  Google Scholar 

  32. McKay GA, Wright GD (1995) Kinetic mechanism of aminoglycoside phosphotransferase type IIIa: evidence for a Theorell–Chance mechanism. J Biol Chem 270:24686–24692

    Article  CAS  PubMed  Google Scholar 

  33. Thompson PR, Hughes DW, Cianciotto NP, Wright GD (1998) Spectinomycin kinase from Legionella pneumophila: characterization of substrate specificity and identification of catalytically important residues. J Biol Chem 273:14788–14795

    Article  CAS  PubMed  Google Scholar 

  34. Tolba S, Egan S, Kallifidas D, Wellington EHM (2002) Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites. FEMS Microbiol Ecol 42:269–276

    Article  CAS  PubMed  Google Scholar 

  35. Wiener P, Egan S, Wellington EMH (1998) Evidence for transfer of antibiotic resistance genes in soil populations of streptomycetes. Mol Ecol 7:120501216

    Article  Google Scholar 

  36. Egan S, Wiener P, Kallifidas D, Wellington EMH (1998) Transfer of streptomycin biosynthesis gene clusters within Streptomycetes isolated from soil. Appl Environ Microbiol 64:5061–5063

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Anderson AS, Clark DJ, Gibbons PH, Sigmund JM (2002) The detection of diverse aminoglycoside phosphotransferases within natural populations of actinomycetes. J Ind Microbiol Biotechnol 29:60–69

    Article  CAS  PubMed  Google Scholar 

  38. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    Article  CAS  PubMed  Google Scholar 

  39. Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240

    Article  CAS  PubMed  Google Scholar 

  40. Todar KG (2012) Todar’s online textbook of bacteriology. http://textbookofbacteriology.net/index.html. Accessed 3 May 2012

  41. McKay GA, Thompson PR, Wright GD (1994) Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 33:6936–6944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the U. S. National Institutes of Health (NIH) RCMI program (Grant number 8G12MD007597) and MBRS-SCORE program (Grants number 3S06GM0816-33S1, SC3GM083752, and SC1GM08232). We especially thank Ms. Myrna Stupart of the Department of Microbiology at Howard University for help with the antibiotic susceptibility protocols and for providing E. coli control strain MM294.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Malcolm Byrnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashenafi, M., Ammosova, T., Nekhai, S. et al. Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme. Mol Cell Biochem 387, 207–216 (2014). https://doi.org/10.1007/s11010-013-1886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1886-1

Keywords

Navigation