Skip to main content

Advertisement

Log in

Capsaicin induces apoptosis in human osteosarcoma cells through AMPK-dependent and AMPK-independent signaling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent studies have focused on the anti-tumor activity of capsaicin. However, the potential effects of capsaicin in osteosarcoma cells and the underlying mechanisms are not fully understood. In the current study, we observed that capsaicin-induced growth inhibition and apoptosis in cultured osteosarcoma cells (U2OS and MG63), which were associated with a significant AMP-activated protein kinase (AMPK) activation. AMPK inhibition by compound C or RNA interference suppressed capsaicin-induced cytotoxicity, while AMPK activators (AICAR and A769662) promoted osteosarcoma cell death. For the mechanism study, we found that AMPK activation was required for capsaicin-induced mTORC1 (mTOR complex 1) inhibition, B cell lymphoma 2 (Bcl-2) downregulation and Bax upregulation in MG63 cells. Capsaicin administration induced p53 activation, mitochondrial translocation and Bcl-2 killer association, such effects were dependent on AMPK activation. Interestingly, we observed a significant pro-apoptotic c-Jun NH2-terminal kinases activation by capsaicin in MG63 cells, which appeared to be AMPK independent. In conclusion, capsaicin possessed strong efficacy against human osteosarcoma cells. Molecular studies revealed that capsaicin activated AMPK-dependent and AMPK-independent signalings to mediate cell apoptosis. The results of this study should have significant translational relevance in managing this deadly malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MTT:

3-(4,5-Dimethyl-thiazol-2-yl)2,5-diphenyl tetrazolium bromide

AICAR:

5-Aminoimidazole-4-carboxamide riboside

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

mTORC1:

mTOR complex 1

Bak:

B-cell lymphoma 2 (Bcl-2) killer

References

  1. Hegyi M, Semsei AF, Jakab Z, Antal I, Kiss J, Szendroi M, Csoka M, Kovacs G (2011) Good prognosis of localized osteosarcoma in young patients treated with limb-salvage surgery and chemotherapy. Pediatr Blood Cancer 57:415–422

    Article  PubMed  Google Scholar 

  2. Jaffe N (2009) Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res 152:239–262

    Article  PubMed  Google Scholar 

  3. Tuoya Baba N, Shimoishi Y, Murata Y, Tada M, Koseki M, Takahata K (2006) Apoptosis induction by Dohevanil, a DHA substitutive analog of capsaicin, in MCF-7 cells. Life Sci 78:1515–1519

    Article  PubMed  CAS  Google Scholar 

  4. Jung MY, Kang HJ, Moon A (2001) Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett 165:139–145

    Article  PubMed  CAS  Google Scholar 

  5. Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Yoshino M (2005) Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res 51:175–183

    Article  PubMed  CAS  Google Scholar 

  6. Sanchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Diaz-Laviada I (2007) Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 12:2013–2024

    Article  PubMed  CAS  Google Scholar 

  7. Tsou MF, Lu HF, Chen SC, Wu LT, Chen YS, Kuo HM, Lin SS, Chung JG (2006) Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells. Anticancer Res 26:1965–1971

    PubMed  CAS  Google Scholar 

  8. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  PubMed  CAS  Google Scholar 

  9. Hardie DG, Carling D (1997) The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  PubMed  CAS  Google Scholar 

  10. Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400

    Article  PubMed  CAS  Google Scholar 

  11. Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69–76

    Article  PubMed  CAS  Google Scholar 

  12. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  PubMed  CAS  Google Scholar 

  13. Cao C, Wan Y (2009) Parameters of protection against ultraviolet radiation-induced skin cell damage. J Cell Physiol 220:277–284

    Article  PubMed  CAS  Google Scholar 

  14. Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH (2010) Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 226(7):1915–1925

    Article  Google Scholar 

  15. Chen MB, Wu XY, Gu JH, Guo QT, Shen WX, Lu PH (2011) Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem Biophys 60:311–322

    Article  PubMed  CAS  Google Scholar 

  16. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685

    Article  PubMed  CAS  Google Scholar 

  17. Kang MR, Park SK, Lee CW, Cho IJ, Jo YN, Yang JW, Kim JA, Yun J, Lee KH, Kwon HJ, Kim BW, Lee K, Kang JS, Kim HM (2012) Widdrol induces apoptosis via activation of AMP-activated protein kinase in colon cancer cells. Oncol Rep 27:1407–1412

    PubMed  CAS  Google Scholar 

  18. Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ, Yang Y (2010) Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem 285:40461–40471

    Article  PubMed  CAS  Google Scholar 

  19. Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res Commun 419:714–747

    Article  Google Scholar 

  20. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694–699

    Article  PubMed  CAS  Google Scholar 

  21. Bogachus LD, Turcotte LP (2010) Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am J Physiol Cell Physiol 299:C1549–C1561

    Article  PubMed  CAS  Google Scholar 

  22. Niu W, Bilan PJ, Ishikura S, Schertzer JD, Contreras-Ferrat A, Fu Z, Liu J, Boguslavsky S, Foley KP, Liu Z, Li J, Chu G, Panakkezhum T, Lopaschuk GD, Lavandero S, Yao Z, Klip A (2010) Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells. Am J Physiol Endocrinol Metab 298:E1058–E1071

    Article  PubMed  CAS  Google Scholar 

  23. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  24. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    Article  PubMed  CAS  Google Scholar 

  25. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  26. Hardie DG (2008) AMPK and Raptor: matching cell growth to energy supply. Mol Cell 30:263–265

    Article  PubMed  CAS  Google Scholar 

  27. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  PubMed  CAS  Google Scholar 

  28. Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N, Segawa K, Ikeda Y, Kizaki M (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64:1071–1078

    Article  PubMed  CAS  Google Scholar 

  29. Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478

    Article  PubMed  CAS  Google Scholar 

  30. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  PubMed  CAS  Google Scholar 

  31. Nieminen AI, Eskelinen VM, Haikala HM, Tervonen TA, Yan Y, Partanen JI, Klefstrom J (2013) Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 110:E1839–E1848

    Article  PubMed  CAS  Google Scholar 

  32. Rumsfield JA, West DP (1991) Topical capsaicin in dermatologic and peripheral pain disorders. DICP 25:381–387

    PubMed  CAS  Google Scholar 

  33. Zhang WY, Li Wan Po A (1994) The effectiveness of topically applied capsaicin. A meta-analysis. Eur J Clin Pharmacol 46:517–522

    Article  PubMed  CAS  Google Scholar 

  34. Donnerer J, Amann R, Schuligoi R, Lembeck F (1990) Absorption and metabolism of capsaicinoids following intragastric administration in rats. Naunyn Schmiedebergs Arch Pharmacol 342:357–361

    Article  PubMed  CAS  Google Scholar 

  35. Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131:682–691

    PubMed  CAS  Google Scholar 

  36. Berberoglu S, Oguz A, Aribal E, Ataoglu O (1997) Osteoblastoma response to radiotherapy and chemotherapy. Med Pediatr Oncol 28:305–309

    PubMed  CAS  Google Scholar 

  37. Camitta B, Wells R, Segura A, Unni KK, Murray K, Dunn D (1991) Osteoblastoma response to chemotherapy. Cancer 68:999–1003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Discipline Leaders Project the Shanghai Municipal Pudong New District health system (PWRd2012-16) and Key Discipline Funding Project of Shanghai, Municipal Pudong New District Health Bureau (PWZxk2010-08).

Conflict of interest

The authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Additional information

Hui Ying and Zhi Wang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, H., Wang, Z., Zhang, Y. et al. Capsaicin induces apoptosis in human osteosarcoma cells through AMPK-dependent and AMPK-independent signaling pathways. Mol Cell Biochem 384, 229–237 (2013). https://doi.org/10.1007/s11010-013-1802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1802-8

Keywords

Navigation