Skip to main content
Log in

Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA–salt-induced hypertension in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the combined effect of aliskiren, a renin inhibitor, and AVE 0991, a Mas-receptor agonist, in experimental hypertension (HT) in rats. HT was produced by administration of deoxycorticosterone acetate (DOCA) and mean arterial blood pressure (MABP) was assessed by tail-cuff method. Treatments were started from 4th week onwards and were continued for 9 days. A significant increase in MABP was noted after 1 week in DOCA control rats, as compared with the base line value. A stable HT developed after 4 weeks of DOCA administration. Treatments with aliskiren and AVE 0991 alone, dose-dependently decreased MABP in DOCA-treated rats. Further, combination of low doses of aliskiren and AVE 0991 significantly reduced MABP, as compared with DOCA control rats and with either drug alone in low doses. It may be concluded that treatment with aliskiren produced down-regulation of both harmful Ang II–AT1-receptor and survival Ang(1–7)/Mas-receptor axis of RAAS. Treatment with combination of low doses of aliskiren and AVE 0991, for the first time, has been shown to produce synergistic blood pressure lowering effect. Therefore, combination of renin inhibitor with Mas-receptor agonist may prove beneficial for the treatment of hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheung BM, Ong KL, Man YB, Lam KS, Lau CP (2006) Prevalence, awareness, treatment, and control of hypertension: United States National Health and Nutrition Examination Survey 2001–2002. J Clin Hypertens 2:93–98

    Article  Google Scholar 

  2. Pierdomenico SD, Di Nicola M, Esposito AL et al (2009) Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens 22:842–847

    Article  PubMed  Google Scholar 

  3. Schmieder RE, Hilgers KF, Schlaich MP et al (2007) Renin–angiotensin system and cardiovascular risk. Lancet 369:1208–1219

    Article  PubMed  CAS  Google Scholar 

  4. Yusuf S, Sleight P, Pogue J et al (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    Article  PubMed  CAS  Google Scholar 

  5. Israili ZH (2000) Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 14:S73–S86

    Article  PubMed  CAS  Google Scholar 

  6. Chappell MC, Iyer SN, Diz DI, Ferrario CM (1998) Antihypertensive effects of angiotensin-(1–7). Braz J Med Biol Res 31:1205–1212

    Article  PubMed  CAS  Google Scholar 

  7. Roks AJM, van Geel PP, Pinto YM et al (1999) Angiotensin-(1–7) is a modulator of the human rennin–angiotensin system. Hypertension 34:296–301

    Article  PubMed  CAS  Google Scholar 

  8. Collister JP, Hendel MD (2003) The role of Ang-(1–7) in mediating the chronic hypotensive effects of losartan in normal rats. J Renin Angiotensin Aldosterone Syst 4:176–179

    Article  PubMed  CAS  Google Scholar 

  9. Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9

    Article  PubMed  CAS  Google Scholar 

  10. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  PubMed  CAS  Google Scholar 

  11. Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA (1996) Angiotensin-(1–7) inhibits vascular smooth muscle cells growth. Hypertension 28:104–108

    Article  PubMed  CAS  Google Scholar 

  12. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI (1997) Counter-regulatory actions of angiotensin-(1–7). Hypertension 30:535–541

    Article  PubMed  CAS  Google Scholar 

  13. Singh K, Singh T, Sharma PL (2011) Beneficial effect of angiotensin (1–7) in diabetic rats with cardiomyopathy. Ther Adv Cardiovasc Dis 5:159–167

    Article  PubMed  CAS  Google Scholar 

  14. Singh T, Singh K, Sharma PL (2010) Ameliorative potential of angiotensin (1–7)/Mas receptor axis in streptozotocin-induced diabetic nephropathy in the rat. Meth Find Exp Clin Pharmacol 32:19–25

    Article  CAS  Google Scholar 

  15. Singh K, Sharma K, Singh M, Sharma PL (2012) Possible mechanism of cardio-reno protective effects of AVE0991, a nonpeptide Mas-receptor agonist in diabetic rats. J Renin Angiotensin Aldosterione Syst 13:334–340

    Article  Google Scholar 

  16. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H (2002) AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension 40:847–852

    Article  PubMed  CAS  Google Scholar 

  17. Lemos VS, Silva DM, Walther T, Alenina N, Bader M, Santos RA (2005) The endothelium-dependent vasodilator effect of the nonpeptide Ang(1–7) mimic AVE 0991 is abolished in the aorta of Mas-knockout mice. J Cardiovasc Pharmacol 46:274–279

    Article  PubMed  CAS  Google Scholar 

  18. Sealey JE, Laragh JH (2007) Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am J Hypertens 20:587–597

    Article  PubMed  CAS  Google Scholar 

  19. Jensen C, Herold P, Brunner HR (2008) Aliskiren: the first renin inhibitor for clinical treatment. Nat Rev Drug Discov 7:310–399

    Article  Google Scholar 

  20. Pilz B, Shagdarsuren E, Wellner M et al (2005) Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46:569–576

    Article  PubMed  CAS  Google Scholar 

  21. Takator LK, Ogura T, Ota Z (1991) Computerized approach using autoradiography to quantify atrial natriuretic peptide receptors in the DOCA–salt hypertensive rat kidney. Regul Pept 35:115–125

    Article  Google Scholar 

  22. Montezano ACI, Callera GE, Mota AL et al (2005) Endothelin-1 contributes to the sexual differences in renal damage in DOCA–salt rats. Peptides 26:1454–1462

    Article  PubMed  CAS  Google Scholar 

  23. Cordellini S (1999) Endothelial dysfunction in DOCA–salt hypertension possible involvement of prostaglandin endoperoxides. Gen Pharmacol 32:315–320

    Article  PubMed  CAS  Google Scholar 

  24. Lastra G, Habibi J, Whaley-Connell AT et al (2009) Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue rennin overexpression. Endocrinology 150:2561–2568

    Article  PubMed  CAS  Google Scholar 

  25. Benter IF, Yousif MHM, Anim JT, Cojocel C, Diz DI (2006) Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. Am J Physiol Heart Circ Physiol 290:H684–H691

    Article  PubMed  CAS  Google Scholar 

  26. Young M, Head G, Funder J (1995) Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol Endocrinol Metab 269:E657–E662

    CAS  Google Scholar 

  27. Dobrzynski E, Wang C, Chao J, Chao L (2000) Adrenomedullin gene delivery attenuates hypertension, cardiac remodeling, and renal injury in deoxycorticosterone acetate–salt hypertensive rats. Hypertension 36:995–1001

    Article  PubMed  CAS  Google Scholar 

  28. Fowler JD, Krueth SB, Bernlohr DA, Katz SA (2009) Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations. Am J Physiol Endocrinol Metab 296:E343–E350

    Article  PubMed  CAS  Google Scholar 

  29. Tank JE, Moe OW, Star RA, Henrich WL (1996) Differential regulation of rat glomerular and proximal tubular renin mRNA following uninephrectomy. Am J Physiol 270:F776–F783

    PubMed  CAS  Google Scholar 

  30. Rosivall L, Navar LG (1983) Effects on renal hemodynamics of intra-arterial infusions of angiotensins I and II. Am J Physiol 245:F181–F187

    PubMed  CAS  Google Scholar 

  31. Liu FY, Cogan MG (1988) Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule: modes of action, mechanism, and kinetics. J Clin Invest 82:601–607

    Article  PubMed  CAS  Google Scholar 

  32. Garvi JL (1991) Angiotensin stimulates bicarbonate transport and Na+/K+ ATPase in rat proximal straight tubules. J Am Soc Nephrol 1:1146–1152

    Google Scholar 

  33. Mitchell KD, Braam B, Navar LG (1992) Hypertensinogenic mechanisms mediated by renal actions of renin–angiotensin system. Hypertension 19:118–127

    Article  Google Scholar 

  34. Eiam-Ong S, Hilden SA, Johns CA, Madias NE (1993) Stimulation of basolateral Na+–HCO3 cotransporter by angiotensin II in rabbit renal cortex. Am J Physiol 265:F195–F203

    PubMed  CAS  Google Scholar 

  35. Wang T, Giebisch G (1996) Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol 271:F143–F149

    PubMed  CAS  Google Scholar 

  36. Stanton A, Jensen C, Nussberger J, O’Brien E (2003) Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42:1137–1143

    Article  PubMed  CAS  Google Scholar 

  37. McMurray JJC, Pitt B, Latine R, Aliskiren Observation of Heart Failure Treatment (ALOFT) Investigators et al (2008) Effect of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ Heart Fail 1:17–24

    Article  PubMed  CAS  Google Scholar 

  38. Wood JM, Schnell CR, Cumin F, Menard J, Webb RL (2005) Aliskiren, a novel, orally effective renin inhibitor, lowers blood pressure in marmosets and spontaneously hypertensive rats. J Hypertens 23:417–426

    Article  PubMed  CAS  Google Scholar 

  39. Azizi M, Webb R, Nussberger J, Hollenberg NK (2006) Renin inhibition with aliskiren: where are we now, and where are we going? J Hypertens 24:243–256

    Article  PubMed  CAS  Google Scholar 

  40. Koka V, Huang XR, Chung ACK, Wang W, Truong LD, Lan HY (2008) Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol 175:1174–1183

    Article  Google Scholar 

  41. Sullivan JC, Bhatia K, Yamamoto T, Elmarakby AA (2010) Angiotensin (1–7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension 56:658–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported partially by a Research Grant obtained from All India Council for Technical Education, New Delhi (File no. 8023/BOR/RID/RPS-167/2007–2008). This paper is dedicated to the fond memories of Prof. Manjeet Singh who expired on 30-03-2009 while this study was in progress. We wish to express our gratitude to Sanofi-Aventis, Germany and Novartis; USA for providing AVE0991 and ALK as an ex-gratia, respectively. We also wish to our sincere thank to the management of ISF college of pharmacy for providing research facility.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulwinder Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, Y., Singh, K. & Sharma, P.L. Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA–salt-induced hypertension in rats. Mol Cell Biochem 373, 189–194 (2013). https://doi.org/10.1007/s11010-012-1489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1489-2

Keywords

Navigation