Skip to main content
Log in

EGFR and PKC are involved in the activation of ERK1/2 and p90 RSK and the subsequent proliferation of SNU-407 colon cancer cells by muscarinic acetylcholine receptors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

mAChR:

Muscarinic acetylcholine receptor

MAPK:

Mitogen-activated protein kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

PMA:

Phorbol-12-myristate-13-acetate

RSK:

p90 ribosomal S6 kinase

References

  1. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9:489–499

    Article  PubMed  CAS  Google Scholar 

  2. Degirolamo C, Modica S, Palasciano G, Moschetta A (2011) Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol Med 17:564–572

    Article  PubMed  CAS  Google Scholar 

  3. Cheng K, Chen Y, Zimniak P, Raufman J-P, Xiao Y, Frucht H (2002) Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. Biochim Biophys Acta 1588:48–55

    Article  PubMed  CAS  Google Scholar 

  4. Cheng K, Raufman J-P (2005) Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol 70:1035–1047

    Article  PubMed  CAS  Google Scholar 

  5. Nathanson NM (1987) Molecular properties of the muscarinic acetylcholine receptor. Annu Rev Neurosci 10:195–236

    Article  PubMed  CAS  Google Scholar 

  6. Frucht H, Jensen RT, Dexter D, Yang W-L, Xiao Y (1999) Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res 5:2532–2539

    PubMed  CAS  Google Scholar 

  7. Li B-S, Ma W, Zhang L, Barker JL, Stenger DA, Pant HC (2001) Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21:1569–1579

    PubMed  CAS  Google Scholar 

  8. Jimenez E, Montiel M (2005) Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol 204:678–686

    Article  PubMed  CAS  Google Scholar 

  9. Matthiesen S, Bahulayan A, Kempkens S, Haag S, Fuhrmann M, Stichnote C, Juergens UR, Racke K (2006) Muscarinic receptors mediate stimulation of human lung fibroblast proliferation. Am J Respir Cell Mol Biol 35:621–627

    Article  PubMed  CAS  Google Scholar 

  10. Ashkenazi A, Ramachandran J, Capon DJ (1989) Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340:146–150

    Article  PubMed  CAS  Google Scholar 

  11. Kopp R, Lambrecht G, Mutschler E, Moser U, Tacke R, Pfeiffer A (1989) Human HT-29 colon carcinoma cells contain muscarinic M3 receptors coupled to phosphoinositide metabolism. Eur J Pharmacol 172:397–405

    Article  PubMed  CAS  Google Scholar 

  12. Dickinson KEJ, Frizzell RA, Sekar MC (1992) Activation of T84 cell chloride channels by carbachol involves a phosphoinositide-coupled muscarinic M3 receptor. Eur J Pharmacol 225:291–298

    Article  PubMed  CAS  Google Scholar 

  13. Yang W-L, Frucht H (2000) Cholinergic receptor up-regulates COX-2 expression and prostaglandin E2 production in colon cancer cells. Carcinogenesis 21:1789–1793

    Article  PubMed  CAS  Google Scholar 

  14. Cheng K, Zimniak P, Raufman J-P (2003) Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells. Cancer Res 63:6744–6750

    PubMed  CAS  Google Scholar 

  15. Ukegawa J-I, Takeuchi Y, Kusayanagi S, Mitamura K (2003) Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 129:272–278

    PubMed  CAS  Google Scholar 

  16. Raufman J-P, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, Xie G, Wess J, Cheng K (2008) Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res 68:3573–3578

    Article  PubMed  CAS  Google Scholar 

  17. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  PubMed  CAS  Google Scholar 

  18. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

  19. Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842

    Article  PubMed  CAS  Google Scholar 

  20. Rozengurt E (2007) Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213:589–602

    Article  PubMed  CAS  Google Scholar 

  21. Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758

    Article  PubMed  CAS  Google Scholar 

  22. Romeo Y, Zhang X, Roux PP (2012) Regulation and function of the RSK family of protein kinases. Biochem J 441:553–569

    Article  PubMed  CAS  Google Scholar 

  23. Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA (2005) The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res 65:3108–3116

    PubMed  CAS  Google Scholar 

  24. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA (2005) Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 65:1027–1034

    Article  PubMed  CAS  Google Scholar 

  25. Park Y-S, Cho NJ (2008) Enhanced proliferation of SNU-407 human colon cancer cells by muscarinic acetylcholine receptors. BMB Rep 41:803–807

    Article  PubMed  CAS  Google Scholar 

  26. Keely SJ, Uribe JM, Barrett KE (1998) Carbachol stimulates transactivation and mitogen-activated protein kinase in T84 cells. J Biol Chem 273:27111–27117

    Article  PubMed  CAS  Google Scholar 

  27. Jimenez E, Gamez MI, Bragado MJ, Montiel M (2002) Muscarinic activation of mitogen-activated protein kinase in rat thyroid epithelial cells. Cell Signal 14:665–672

    Article  PubMed  CAS  Google Scholar 

  28. Kim S, Shin Y, Shin Y, Park Y-S, Cho NJ (2008) Regulation of ERK1/2 by the C. elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Mol Cells 25:504–509

    PubMed  CAS  Google Scholar 

  29. Merritt JE, Rink TJ (1987) Rapid increases in cytosolic free calcium in response to muscarinic stimulation of rat parotid acinar cells. J Biol Chem 262:4958–4960

    PubMed  CAS  Google Scholar 

  30. McDonough PM, Eubanks JH, Brown JH (1988) Desensitization and recovery of muscarinic and histaminergic Ca2+ mobilization in 1321N1 astrocytoma cells. Biochem J 249:135–141

    PubMed  CAS  Google Scholar 

  31. Slack BE (2000) The m3 muscarinic acetylcholine receptor is coupled to mitogen-activated protein kinase via protein kinase C and epidermal growth factor receptor kinase. Biochem J 348:381–387

    Article  PubMed  CAS  Google Scholar 

  32. Fomina-Yadlin D, Kubicek S, Walpita D, Dancik V, Hecksher-Sorensen J, Bittker JA, Sharifnia T, Shamji A, Clemons PA, Wagner BK, Schreiber SL (2010) Small-molecule inducers of insulin expression in pancreatic α-cells. Proc Natl Acad Sci USA 107:15099–15104

    Article  PubMed  CAS  Google Scholar 

  33. Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539

    Article  PubMed  CAS  Google Scholar 

  34. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  35. Oh J-H, Ku J-L, Yoon K-A, Kwon H-J, Kim W-H, Park H-S, Yeo K-S, Song S-Y, Chung J-K, Park J-G (1999) Establishment and characterization of 12 human colorectal-carcinoma cell lines. Int J Cancer 81:902–910

    Article  PubMed  CAS  Google Scholar 

  36. Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS, Kim HJ, Keku TO, Der CJ (2009) KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 8:834–843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation grants funded by the Korea Government (KRF-2005-005-J15001 and 2009-0072223) and by the research grant of the Chungbuk National University in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Jeong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YS., Cho, N.J. EGFR and PKC are involved in the activation of ERK1/2 and p90 RSK and the subsequent proliferation of SNU-407 colon cancer cells by muscarinic acetylcholine receptors. Mol Cell Biochem 370, 191–198 (2012). https://doi.org/10.1007/s11010-012-1410-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1410-z

Keywords

Navigation