Skip to main content

Advertisement

Log in

CREBZF, a novel Smad8-binding protein

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Smads are the secondary messengers of the transforming growth factor-β (TGF-β) signaling pathway. TGF-β receptors phosphorylate the Receptor Smads (R-Smads) upon ligand binding; activated R-Smads translocate to the nucleus and function as transcription factors. Among the R-Smads, Smads 1, 5, and 8 mainly mediate signals in the bone morphogenetic proteins (BMPs) pathways, while Smads 2/3 mediate TGF-β signaling. The regulation of Smads in the TGF-β signal pathway has been well defined, but the relationship of Smads 1, 5, and 8 to the BMP pathways has been relatively understudied. To understand the specific regulation of BMP mediating Smads, we performed yeast two-hybrid screening using the Mad homology 2(MH2) domain of Smad8 as bait. In this screening, novel Smad-binding protein, CREBZF—a basic region–leucine zipper (bZIP) transcription factor—was identified. The interaction of CREBZF and Smads 1, 5, and 8 was confirmed by immunoprecipitation in a human prostate cancer cell line. Overexpression of CREBZF inhibited the promoter activity of BMP response element and abolished the cell growth inhibition induced by BMP-6. Thus, CREBZF inhibits the function of BMP-6 by interacting with Smads. The identification of this novel Smads-binding protein, among others will help us understand the modulation of BMP-signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358

    PubMed  CAS  Google Scholar 

  2. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci USA 93:790–794

    Article  PubMed  CAS  Google Scholar 

  3. Sousa Vde O, Almeida JC, Eller CM, Gomes FC (2006) Characterization of TGF-beta1 type II receptor expression in cultured cortical astrocytes. In Vitro Cell Dev Biol Anim 42:171–175. doi:10.1290/0602013.1

    Article  PubMed  Google Scholar 

  4. Massague J (1992) Receptors for the TGF-beta family. Cell 69:1067–1070. doi:0092-8674(92)90627-O

    Article  PubMed  CAS  Google Scholar 

  5. Mehra A, Attisano L, Wrana JL (2000) Characterization of Smad phosphorylation and Smad-receptor interaction. Methods Mol Biol 142:67–78. doi:10.1385/1-59259-053-5:67

    PubMed  CAS  Google Scholar 

  6. de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ (1997) Characterization of functional domains within Smad4/DPC4. J Biol Chem 272:13690–13696

    Article  PubMed  Google Scholar 

  7. Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644

    PubMed  CAS  Google Scholar 

  8. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754. doi:10.1093/emboj/19.8.1745

    Article  PubMed  CAS  Google Scholar 

  9. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810. doi:10.1101/gad.1350705

    Article  PubMed  CAS  Google Scholar 

  10. Nakayama T, Berg LK, Christian JL (2001) Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. Mech Dev 100:251–262. doi:S0925477300005335

    Article  PubMed  CAS  Google Scholar 

  11. Springer J, Scholz FR, Peiser C, Groneberg DA, Fischer A (2004) SMAD-signaling in chronic obstructive pulmonary disease: transcriptional down-regulation of inhibitory SMAD 6 and 7 by cigarette smoke. Biol Chem 385:649–653. doi:10.1515/BC.2004.080

    Article  PubMed  CAS  Google Scholar 

  12. Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M, Miyazono K (2000) Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol Biol Cell 11:555–565

    PubMed  CAS  Google Scholar 

  13. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85:9484–9488

    Article  PubMed  CAS  Google Scholar 

  14. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  15. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  PubMed  CAS  Google Scholar 

  16. Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35:43–56. doi:10.1002/gene.10167

    Article  PubMed  CAS  Google Scholar 

  17. Sivertsen EA, Huse K, Hystad ME, Kersten C, Smeland EB, Myklebust JH (2007) Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat TAg cells. Eur J Immunol 37:2937–2948. doi:10.1002/eji.200636759

    Article  PubMed  CAS  Google Scholar 

  18. Hong JH, Lee GT, Lee JH, Kwon SJ, Park SH, Kim SJ, Kim IY (2009) Effect of bone morphogenetic protein-6 on macrophages. Immunology 128:e442–e450. doi:10.1111/j.1365-2567.2008.02998.x

    Article  PubMed  Google Scholar 

  19. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP (1997) A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388:87–93. doi:10.1038/40431

    Article  PubMed  CAS  Google Scholar 

  20. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94:585–594. doi:S0092-8674(00)81600-1

    Article  PubMed  CAS  Google Scholar 

  21. Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP, Lin K (2001) The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol 8:248–253. doi:10.1038/84995

    Article  PubMed  CAS  Google Scholar 

  22. Noda D, Itoh S, Watanabe Y, Inamitsu M, Dennler S, Itoh F, Koike S, Danielpour D, ten Dijke P, Kato M (2006) ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad-induced growth arrest of prostate cells. Oncogene 25:5591–5600. doi:10.1038/sj.onc.1209571

    Article  PubMed  CAS  Google Scholar 

  23. Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE (2000) Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci USA 97:5924–5929. doi:10.1073/pnas.090097797

    Article  PubMed  CAS  Google Scholar 

  24. Lin F, Morrison JM, Wu W, Worman HJ (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14:437–445. doi:10.1093/hmg/ddi040

    Article  PubMed  CAS  Google Scholar 

  25. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89. doi:10.1038/38008

    Article  PubMed  CAS  Google Scholar 

  26. Peterson RS, Andhare RA, Rousche KT, Knudson W, Wang W, Grossfield JB, Thomas RO, Hollingsworth RE, Knudson CB (2004) CD44 modulates Smad1 activation in the BMP-7 signaling pathway. J Cell Biol 166:1081–1091. doi:10.1083/jcb.200402138

    Article  PubMed  CAS  Google Scholar 

  27. Guo X, Lin Y, Horbinski C, Drahushuk KM, Kim IJ, Kaplan PL, Lein P, Wang T, Higgins D (2001) Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity. J Neurobiol 48:120–130. doi:10.1002/neu.1046

    Article  PubMed  CAS  Google Scholar 

  28. Lu R, Misra V (2000) Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res 28:2446–2454

    Article  PubMed  CAS  Google Scholar 

  29. Akhova O, Bainbridge M, Misra V (2005) The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. J Virol 79:14708–14718. doi:10.1128/JVI.79.23.14708-14718.2005

    Article  PubMed  CAS  Google Scholar 

  30. Hogan MR, Cockram GP, Lu R (2006) Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett 580:58–62. doi:10.1016/j.febslet.2005.11.046

    Article  PubMed  CAS  Google Scholar 

  31. Xie YB, Lee OH, Nedumaran B, Seong HA, Lee KM, Ha H, Lee IK, Yun Y, Choi HS (2008) SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem J 416:463–473. doi:10.1042/BJ20080782

    Article  PubMed  CAS  Google Scholar 

  32. Ide H, Yoshida T, Matsumoto N, Aoki K, Osada Y, Sugimura T, Terada M (1997) Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 57:5022–5027

    PubMed  CAS  Google Scholar 

  33. Ellis LR, Warner DR, Greene RM, Pisano MM (2003) Interaction of Smads with collagen types I, III, and V. Biochem Biophys Res Commun 310:1117–1123. doi:S0006291X03019120

    Article  PubMed  CAS  Google Scholar 

  34. Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274:37413–37420

    Article  PubMed  CAS  Google Scholar 

  35. Daury L, Busson M, Tourkine N, Casas F, Cassar-Malek I, Wrutniak-Cabello C, Castellazzi M, Cabello G (2001) Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts. Oncogene 20:7998–8008. doi:10.1038/sj.onc.1204967

    Article  PubMed  CAS  Google Scholar 

  36. Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T (2007) Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development 134:3649–3664. doi:10.1242/dev.007799

    Article  PubMed  CAS  Google Scholar 

  37. Misra V, Rapin N, Akhova O, Bainbridge M, Korchinski P (2005) Zhangfei is a potent and specific inhibitor of the host cell factor-binding transcription factor Luman. J Biol Chem 280:15257–15266. doi:10.1074/jbc.M500728200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by generous grants from the Tanzman Foundation and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-0001042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Yi Kim.

Additional information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Lee, G.T., Kwon, S.J. et al. CREBZF, a novel Smad8-binding protein. Mol Cell Biochem 368, 147–153 (2012). https://doi.org/10.1007/s11010-012-1353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1353-4

Keywords

Navigation