Skip to main content
Log in

PP2A and DUSP6 are involved in sphingosylphosphorylcholine-induced hypopigmentation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Activation of extracellular signal-related kinase (ERK) is involved in decreased melanogenesis by sphingosylphosphorylcholine (SPC). In the present study, we confirmed that SPC activated ERK and that a specific inhibitor of the ERK pathway (PD98059) recovered SPC-induced hypopigmentation. Moreover, we found that SPC significantly reduces protein phosphatase 2A (PP2A) activity in Mel-Ab cells, and that PP2A activator treatment abrogated SPC-induced hypopigmentation. We determined that α-melanocyte-stimulating hormone (α-MSH) increased the expression of dual-specificity phosphatase 6 (DUSP6), an ERK phosphatase, in a time-dependent manner. In contrast, SPC decreased the level of DUSP6 in Mel-Ab cells. Furthermore, inhibiting DUSP6 increased ERK activation and subsequently augmented the SPC-induced hypopigmenting effects. Taken together, our data suggest that SPC-induced phosphatase inhibition is also responsible for the hypopigmentary effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α-MSH:

α-Melanocyte-stimulating hormone

BSA:

Bovine serum albumin

CT:

Cholera toxin

DUSP6:

Dual-specificity phosphatase 6

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

MAPKs:

Mitogen-activated protein kinases

MITF:

Microphthalmia-associated transcription factor

PP2A:

Protein phosphatase 2A

SPC:

Sphingosylphosphorylcholine

TPA:

12-O-Tetradecanoylphorbol-13-acetate

TRP:

Tyrosinase-related protein

References

  1. Desai NN, Spiegel S (1991) Sphingosylphosphorylcholine is a remarkably potent mitogen for a variety of cell lines. Biochem Biophys Res Commun 181:361–366

    Article  PubMed  CAS  Google Scholar 

  2. Desai NN, Carlson RO, Mattie ME, Olivera A, Buckley NE, Seki T, Brooker G, Spiegel S (1993) Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol 121:1385–1395

    Article  PubMed  CAS  Google Scholar 

  3. Kim DS, Park SH, Kwon SB, Park ES, Huh CH, Youn SW, Park KC (2006) Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis in human melanocytes. Pigment Cell Res 19:146–153

    Article  PubMed  CAS  Google Scholar 

  4. Kim DS, Park SH, Kwon SB, Kwon NS, Park KC (2010) Sphingosylphosphorylcholine inhibits melanin synthesis via pertussis toxin-sensitive MITF degradation. J Pharm Pharmacol 62:181–187

    Article  PubMed  Google Scholar 

  5. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  PubMed  CAS  Google Scholar 

  6. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414

    Article  PubMed  CAS  Google Scholar 

  7. Villareal MO, Han J, Yamada P, Shigemori H, Isoda H (2010) Hirseins inhibit melanogenesis by regulating the gene expressions of Mitf and melanogenesis enzymes. Exp Dermatol 19:450–457

    Article  PubMed  CAS  Google Scholar 

  8. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  PubMed  CAS  Google Scholar 

  9. Chuderland D, Seger R (2005) Protein–protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol 29:57–74

    Article  PubMed  CAS  Google Scholar 

  10. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC (2003) Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci 116:1699–1706

    Article  PubMed  CAS  Google Scholar 

  11. Englaro W, Bertolotto C, Busca R, Brunet A, Pages G, Ortonne JP, Ballotti R (1998) Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J Biol Chem 273:9966–9970

    Article  PubMed  CAS  Google Scholar 

  12. Seufferlein T, Rozengurt E (1995) Sphingosylphosphorylcholine activation of mitogen-activated protein kinase in Swiss 3T3 cells requires protein kinase C and a pertussis toxin-sensitive G protein. J Biol Chem 270:24334–24342

    Article  PubMed  CAS  Google Scholar 

  13. Higuchi K, Kawashima M, Ichikawa Y, Imokawa G (2003) Sphingosylphosphorylcholine is a melanogenic stimulator for human melanocytes. Pigment Cell Res 16:670–678

    Article  PubMed  CAS  Google Scholar 

  14. Gomez N, Cohen P (1991) Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353:170–173

    Article  PubMed  CAS  Google Scholar 

  15. Anderson NG, Maller JL, Tonks NK, Sturgill TW (1990) Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343:651–653

    Article  PubMed  CAS  Google Scholar 

  16. Zhou B, Wang ZX, Zhao Y, Brautigan DL, Zhang ZY (2002) The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem 277:31818–31825

    Article  PubMed  CAS  Google Scholar 

  17. Ng DC, Bogoyevitch MA (2000) The mechanism of heat shock activation of ERK mitogen-activated protein kinases in the interleukin 3-dependent ProB cell line BaF3. J Biol Chem 275:40856–40866

    Article  PubMed  CAS  Google Scholar 

  18. Kim DS, Park SH, Kwon SB, Youn SW, Park ES, Park KC (2005) Heat treatment decreases melanin synthesis via protein phosphatase 2A inactivation. Cell Signal 17:1023–1031

    Article  PubMed  CAS  Google Scholar 

  19. Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6:391–403

    Article  PubMed  CAS  Google Scholar 

  20. Bermudez O, Jouandin P, Rottier J, Bourcier C, Pages G, Gimond C (2011) Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. J Cell Physiol 226:276–284

    Article  PubMed  CAS  Google Scholar 

  21. Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5:680–687

    Article  PubMed  CAS  Google Scholar 

  22. Dooley TP, Gadwood RC, Kilgore K, Thomasco LM (1994) Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol 7:188–200

    Article  PubMed  CAS  Google Scholar 

  23. Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y (1998) Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Res 11:275–282

    Article  PubMed  CAS  Google Scholar 

  24. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A, Roy DC, Valtieri M, Bruner-Klisovic R, Caligiuri MA, Bloomfield CD, Marcucci G, Perrotti D (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  PubMed  CAS  Google Scholar 

  25. Kim DS, Kim SY, Chung JH, Kim KH, Eun HC, Park KC (2002) Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell Signal 14:779–785

    Article  PubMed  CAS  Google Scholar 

  26. Karlsson AM, Lerner MR, Unett D, Lundstrom I, Svensson SP (2000) Melatonin-induced organelle movement in melanophores is coupled to tyrosine phosphorylation of a high molecular weight protein. Cell Signal 12:469–474

    Article  PubMed  CAS  Google Scholar 

  27. Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y, Damron DS (2000) Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2:261–267

    Article  PubMed  CAS  Google Scholar 

  28. Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y, Damron DS (2006) Retraction; sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 8:299

    CAS  Google Scholar 

  29. Nixon GF, Mathieson FA, Hunter I (2008) The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 47:62–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (A100179) from the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Seok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, HS., Park, KC. & Kim, DS. PP2A and DUSP6 are involved in sphingosylphosphorylcholine-induced hypopigmentation. Mol Cell Biochem 367, 43–49 (2012). https://doi.org/10.1007/s11010-012-1317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1317-8

Keywords

Navigation