Skip to main content

Advertisement

Log in

Lamin misexpression upregulates three distinct ubiquitin ligase systems that degrade ATR kinase in HeLa cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lamins are the major structural components of the nucleus and mutations in the human lamin A gene cause a number of genetic diseases collectively termed laminopathies. At the cellular level, lamin A mutations cause aberrant nuclear morphology and defects in nuclear functions such as the response to DNA damage. We have investigated the mechanism of depletion of a key damage sensor, ATR (Ataxia-telangiectasia-mutated-and-Rad3-related) kinase, in HeLa cells expressing lamin A mutants or lamin A shRNA. The degradation of ATR kinase in these cells was through the proteasomal pathway as it was reversed by the proteasomal inhibitor MG132. Expression of lamin A mutants or shRNA led to transcriptional activation of three ubiquitin ligase components, namely, RNF123 (ring finger protein 123), HECW2 (HECT domain ligase W2) and the F-box protein FBXW10. Ectopic expression of RNF123, HECW2 or FBXW10 directly resulted in proteasomal degradation of ATR kinase and the ring domain of RNF123 was required for this degradation. However, these ligases did not alter the stability of DNA-dependent protein kinase, which is not depleted upon lamin misexpression. Although degradation of ATR kinase was reversed by MG132, it was not affected by the nuclear export inhibitor, leptomycin B, suggesting that ATR kinase is degraded within the nucleus. Our findings indicate that lamin misexpression can lead to deleterious effects on the stability of the key DNA damage sensor, ATR kinase by upregulation of specific components of the ubiquitination pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Worman HJ, Courvalin J-C (2005) Nuclear envelope, nuclear lamina and inherited disease. Int Rev Cytol 246:231–279

    Article  PubMed  CAS  Google Scholar 

  2. Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86:967–1008

    Article  PubMed  CAS  Google Scholar 

  3. Capell BC, Collins FS (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7:940–952

    Article  PubMed  CAS  Google Scholar 

  4. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  PubMed  CAS  Google Scholar 

  5. Parnaik VK (2008) Role of nuclear lamins in nuclear organization, cellular signaling and inherited diseases. Int Rev Cell Mol Biol 266:157–206

    Article  PubMed  CAS  Google Scholar 

  6. Parnaik VK, Chaturvedi P, Muralikrishna Bh (2011) Lamins, laminopathies and disease mechanisms: possible role for proteasomal degradation of key regulatory proteins. J Biosci 36:471–479

    Article  PubMed  CAS  Google Scholar 

  7. Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA, Stewart CL, Harlow E, Kennedy BK (2004) A-type lamins regulate retinoblastoma protein function by promoting sub-nuclear localization and preventing proteasomal degradation. Proc Natl Acad Sci USA 101:9677–9682

    Article  PubMed  CAS  Google Scholar 

  8. Muchir A, Massart C, van Engelen BG, Lammens M, Bonne G, Worman HJ (2006) Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins. Biochem Biophys Res Commun 351:1011–1017

    Article  PubMed  CAS  Google Scholar 

  9. Chaturvedi P, Parnaik VK (2010) Lamin A rod mutants target heterochromatin protein 1α and β for proteasomal degradation by activation of F-box protein, FBXW10. PLoS ONE 5:e10620

    Article  PubMed  Google Scholar 

  10. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    Article  PubMed  CAS  Google Scholar 

  11. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 in G1 phase. Nat Cell Biol 6:1229–1235

    Article  PubMed  CAS  Google Scholar 

  12. Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, Watanabe K, Nakagawa T, Nakagawara A (2003) A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun 308:106–113

    Article  PubMed  CAS  Google Scholar 

  13. Manju K, Muralikrishna Bh, Parnaik VK (2006) Expression of disease-causing lamin mutants impairs the formation of DNA repair foci. J Cell Sci 119:2704–2714

    Article  PubMed  CAS  Google Scholar 

  14. Abraham RT (2001) Cell cycle checkpoint signalling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  15. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  PubMed  CAS  Google Scholar 

  16. Flynn RL, Zou L (2010) ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36:133–140

    Article  PubMed  Google Scholar 

  17. Mariappan I, Parnaik VK (2005) Sequestration of pRb by cyclin D3 causes intranuclear reorganization of lamin A/C during muscle cell differentiation. Mol Biol Cell 16:1948–1960

    Article  PubMed  CAS  Google Scholar 

  18. Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT (2000) Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14:2989–3002

    Article  PubMed  CAS  Google Scholar 

  19. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  PubMed  CAS  Google Scholar 

  20. Wu D, Chen B, Parihar K, He L, Fan C, Zhang J, Liu L, Gillis A, Bruce A, Kapoor A, Tang D (2006) ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function. Oncogene 25:1153–1164

    Article  PubMed  CAS  Google Scholar 

  21. Fiszer-Kierzkowska A, Vydra N, Wysocka-Wycisk A, Kronekova Z, Jarzab M, Lisowska KM, Krawczyk Z (2011) Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol Biol 12:27

    Article  PubMed  CAS  Google Scholar 

  22. Östlund C, Bonne G, Schwartz K, Worman HJ (2001) Properties of lamin A mutants found in Emery–Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 114:4435–4445

    PubMed  Google Scholar 

  23. Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B (2001) Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery–Dreifuss muscular dystrophy. J Cell Sci 114:4447–4457

    PubMed  CAS  Google Scholar 

  24. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 101:8963–8968

    Article  PubMed  CAS  Google Scholar 

  25. Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson–Gilford progeria by drug treatment. Cell Mol Life Sci 62:2669–2678

    Article  PubMed  CAS  Google Scholar 

  26. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat Med 11:440–445

    Article  PubMed  CAS  Google Scholar 

  27. Devgan SS, Sanal O, Doil C, Nakamura K, Nahas SA, Pettijohn K, Bartek J, Lukas C, Gatti RA (2011) Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxia-telangiectasia. Cell Death Diff 18:1500–1506

    Article  CAS  Google Scholar 

  28. Kotoshiba S, Kamura T, Hara T, Ishida N, Nakayama KI (2005) Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 280:17694–17700

    Article  PubMed  CAS  Google Scholar 

  29. Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    Article  PubMed  CAS  Google Scholar 

  30. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  PubMed  CAS  Google Scholar 

  31. Huang TT, Kudo N, Yoshida M, Miyamoto S (2000) A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc Natl Acad Sci USA 97:1014–1019

    Article  PubMed  CAS  Google Scholar 

  32. Savulesco AF, Rorem A, Harel A (2011) Proteasomes crossing the nuclear border. Nucleus 2:258–263

    Article  Google Scholar 

  33. Jin Y, Zeng SX, Lee H, Lu H (2004) MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J Biol Chem 279:20035–20043

    Article  PubMed  CAS  Google Scholar 

  34. Broadie KM, Henderson BR (2010) Differential modulation of BRCA1 and BARD1 nuclear localization and foci assembly by DNA damage. Cell Signal 22:291–302

    Article  Google Scholar 

  35. Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D, Grotsky DA, Morgado-Palacin L, Gapud EJ, Sleckman BP, Sullivan T, Sage J, Stewart CL, Mai S, Gonzalo S (2009) Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J 28:2414–2427

    Article  PubMed  CAS  Google Scholar 

  36. Gonzalez-Suarez I, Redwood AB, Grotsky DA, Neumann MA, Cheng EH, Stewart CL, Dusso A, Gonzalo S (2011) A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J 30:3383–3396

    Article  PubMed  CAS  Google Scholar 

  37. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  PubMed  CAS  Google Scholar 

  38. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  PubMed  CAS  Google Scholar 

  39. Zou L, Cortez D, Elledge SJ (2002) Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16:198–208

    Article  PubMed  CAS  Google Scholar 

  40. Herold S, Hock A, Herkert B, Berns K, Mullenders J, Beijersbergen R, Bernards R, Eilers M (2008) Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1. EMBO J 27:2851–2861

    Article  PubMed  CAS  Google Scholar 

  41. Spiegelman VS, Slaga TJ, Pagano M, Minamoto T, Ronai Z, Fuchs SY (2000) Wnt/β-catenin signaling induces the expression and activity of β-TRCP ubiquitin ligase receptor. Mol Cell 5:877–882

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bo Cen and Akira Nakagawara for generously providing reagents. The authors are grateful to Nandini Rangaraj for help with confocal microscopy. V. K. P. is a recipient of the J. C. Bose national fellowship from the Department of Science and Technology, India. P. C. and K. S. were supported by predoctoral fellowships from the Council of Scientific and Industrial Research and Department of Biotechnology, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena K. Parnaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralikrishna, B., Chaturvedi, P., Sinha, K. et al. Lamin misexpression upregulates three distinct ubiquitin ligase systems that degrade ATR kinase in HeLa cells. Mol Cell Biochem 365, 323–332 (2012). https://doi.org/10.1007/s11010-012-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1272-4

Keywords

Navigation