Skip to main content

Advertisement

Log in

Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone reconstruction is essential in orthodontic treatment that caters to the correction of malocclusion by bone reconstruction. Mesenchymal stem cells (MSCs) have been demonstrated a great potency of osteogenesis. The aim of this study was to investigate the effect of hypoxia on the rat bone marrow MSCs (rBMSCs) in vitro during osteogenesis. In this study, we found that temporary exposure of rBMSCs after osteogenic induction for 7 days to hypoxia (2% oxygen) led to a marked decrease in ALPase activity and the expression of osteocalcin and Runt related transcription factor 2/core binding factor a1 (Runx2/Cbfa1). Meanwhile, we found that exposure to hypoxia led to an early and transient increase in the level of phosphorylated ERK1/2 but had no obvious effects on mitogen-activated protein kinase (p38 MAPK) level. Based on these results, we concluded that hypoxia could inhibit osteogenic differentiation of rBMSCs possibly through MEK-ERK 1/2, while p38 MAPK may not participate in this regulation. Further exploration into the mechanisms of hypoxia on osteogenesis would surely provide reliable evidence for clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALPase:

Alkaline phosphatase

OC:

Osteocalcin

rBMSCs:

Rat bone marrow mesenchymal stem cells

VEGF:

Vascular endothelial growth factor

Runx2:

Runt related transcription factor 2

Cbfa1:

Core binding factor a1

hMSCs:

Human mesenchymal stem cells

References

  1. Vandevska-Radunovic V (1999) Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement. A review of the literature. Eur J Orthod 21:231–247

    Article  PubMed  CAS  Google Scholar 

  2. Gaengler P, Merte K (1983) Effects of force application on periodontal blood circulation. A vital microscopic study in rats. J Periodontal Res 18:86–92

    Article  PubMed  CAS  Google Scholar 

  3. Gianelly AA (1969) Force-induced changes in the vascularity of the periodontal ligament. Am J Orthod 55:5–11

    Article  PubMed  CAS  Google Scholar 

  4. Hosoyama M (1989) Changes in the microvascular pattern of the periodontium in an experimental tooth movement]. Nippon Kyosei Shika Gakkai Zasshi 48:425–442

    PubMed  CAS  Google Scholar 

  5. Rygh P (1972) Ultrastructural cellular reactions in pressure zones of rat molar periodontium incident to orthodontic tooth movement. Acta Odontol Scand 30:575–593

    Article  PubMed  CAS  Google Scholar 

  6. Rygh P (1972) Ultrastructural vascular changes in pressure zones of rat molar periodontium incident to orthodontic movement. Scand J Dent Res 80:307–321

    PubMed  CAS  Google Scholar 

  7. Castelli WA, Dempster WT (1965) The periodontal vasculature and its responses to experimental pressures. J Am Dent Assoc 70:890–905

    PubMed  CAS  Google Scholar 

  8. Macapanpan LC, Weinmann JP (1954) The influence of injury to the periodontal membrane on the spread of gingival inflammation. J Dent Res 33:263–272

    Article  PubMed  CAS  Google Scholar 

  9. Heppenstall RB, Grislis G, Hunt TK (1975) Tissue gas tensions and oxygen consumption in healing bone defects. Clin Orthop 106:357–365

    Article  PubMed  Google Scholar 

  10. Gordillo GM, Hunt TK, Sen CK (2003) Significance of oxygen therapeutics. Wound Repair Regen 11:393; author reply 393

    Google Scholar 

  11. Rygh P, Selvig KA (1973) Erythrocyte crystallization in rat molar periodontium incident to tooth movement. Scand J Dent Res 81:62–73

    PubMed  CAS  Google Scholar 

  12. Murrell EF, Yen EH, Johnson RB (1996) Vascular changes in the periodontal ligament after removal of orthodontic forces. Am J Orthod Dentofac Orthop 110:280–286

    Article  CAS  Google Scholar 

  13. Azuma M (1970) Study on histologic changes of periodontal membrane incident to experimental tooth movement. Bull Tokyo Med Dent Univ 17:149–178

    PubMed  CAS  Google Scholar 

  14. Warren SM, Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Bouletreau PJ, Longaker MT (2001) Hypoxia regulates osteoblast gene expression. J Surg Res 99:147–155

    Article  PubMed  CAS  Google Scholar 

  15. Brighton CT, Krebs AG (1972) Oxygen tension of nonunion of fractured femurs in the rabbit. Surg Gynecol Obstet 135:379–385

    PubMed  CAS  Google Scholar 

  16. Heppenstall RB, Goodwin CW, Brighton CT (1976) Fracture healing in the presence of chronic hypoxia. J Bone Jt Surg Am 58:1153–1156

    CAS  Google Scholar 

  17. Akeno N, Czyzyk-Krzeska MF, Gross TS, Clemens TL (2001) Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2alpha. Endocrinology 142:959–962

    Article  PubMed  CAS  Google Scholar 

  18. Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, Gittes GK, Longaker MT (1999) Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg 104:738–747

    Article  PubMed  CAS  Google Scholar 

  19. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, Longaker MT (2000) Hypoxia increases insulin like growth factor gene expression in rat osteoblasts. Ann Plast Surg 44:529–534; discussion 534–535

    Google Scholar 

  20. Brighton CT, Heppenstall RB (1971) Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits. J Bone Jt Surg Am 53:719–728

    CAS  Google Scholar 

  21. Shapiro IM, Boyde A (1987) Mineralization of normal and rachitic chick growth cartilage: vascular canals, cartilage calcification and osteogenesis. Scanning Microsc 1:599–606

    PubMed  CAS  Google Scholar 

  22. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  PubMed  CAS  Google Scholar 

  23. Raheja LF, Genetos DC, Yellowley CE (2008) Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochem Biophys Res Commun 366:1061–1066

    Article  PubMed  CAS  Google Scholar 

  24. Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25:517–523

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Zhao Z, Yang J, Liu J, Wang J, Li X, Liu Y (2009) p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds. J Cell Physiol 221:609–617

    Article  PubMed  CAS  Google Scholar 

  26. Liu J, Zhao Z, Li J, Zou L, Shuler C, Zou Y, Huang X, Li M, Wang J (2009) Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J Cell Biochem 107:224–232

    Article  PubMed  CAS  Google Scholar 

  27. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    Article  PubMed  CAS  Google Scholar 

  28. Kofoed H, Sjontoft E, Siemssen SO, Oleson HP (1985) Bone marrow circulation after osteotomy. Acta Orthop Scand 56:400–403

    Article  PubMed  CAS  Google Scholar 

  29. Tùndevold E, Eriksen J, Jansen E (1979) Observations on long bone medullary pressures in relation to arterial pO2, pCO2 and pH in anaesthetized dog. Acta Orthop Scand 40:645–651

    Google Scholar 

  30. Ishikawa Y, Ito T (1988) Kinetics of hemopoietic stem cells in a hypoxic culture. Eur J Haematol 40:126–129

    Article  PubMed  CAS  Google Scholar 

  31. Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66:889–900

    PubMed  CAS  Google Scholar 

  32. Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  33. Ontiveros C, Irwin R, Wiseman RW, McCabe LR (2004) Hypoxia suppresses Runx2 independent of modeled microgravity. J Cell Physiol 200:169–176

    Article  PubMed  CAS  Google Scholar 

  34. Park JH, Park BH, Kim HK, Park TS, Baek HS (2002) Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol 192:197–203

    Article  PubMed  CAS  Google Scholar 

  35. Salim A, Nacamuli RP, Morgan EF, Giaccia AJ, Longaker MT (2004) Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem 279:40007–40016

    Article  PubMed  CAS  Google Scholar 

  36. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  37. Hirao M, Hashimoto J, Yamasaki N, Ando W, Tsuboi H, Myoui A, Yoshikawa H (2007) Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes. J Bone Miner Metab 25:266–276

    Article  PubMed  CAS  Google Scholar 

  38. Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339

    Article  PubMed  CAS  Google Scholar 

  39. Gruber R, Kandler B, Agis H, Fischer MB, Watzek G (2008) Bone cell responsiveness to growth and differentiation factors under hypoxia in vitro. Int J Oral Maxillofac Implants 23:417–426

    PubMed  Google Scholar 

  40. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR (2006) Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 312:1693–1702

    Article  PubMed  CAS  Google Scholar 

  41. Liu L, Zhang H, Sun L, Gao Y, Jin H, Liang S, Wang Y, Dong M, Shi Y, Li Z, Fan D (2010) ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int J Cancer 127:820–829

    Article  PubMed  CAS  Google Scholar 

  42. Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275:4453–4459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly thank Zhiguang Su for carefully reading the manuscript. This work was supported by grants from the National Natural Science Foundation of China [No. 30870597, 30901698, and 30900286].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Lingyong Jiang.

Additional information

Yating Wang and Juan Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, J., Wang, Y. et al. Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 362, 25–33 (2012). https://doi.org/10.1007/s11010-011-1124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1124-7

Keywords

Navigation