Skip to main content
Log in

SNIP1: a new activator of HSE signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SNIP1:

Smad nuclear interacting protein 1

HSP:

Heat shock proteins

HSE:

Heat shock elements

HSF:

Heat shock factor

References

  1. Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB (2000) A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Genes Dev 14(13):1605–1616

    PubMed  CAS  Google Scholar 

  2. Durocher D, Henckel J, Fersht AR, Jackson SP (1999) The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 4(3):387–394

    Article  PubMed  CAS  Google Scholar 

  3. Kim RH, Flanders KC, Birkey Reffey S, Anderson LA, Duckett CS, Perkins ND, Roberts AB (2001) SNIP1 inhibits NF-kappa B signaling by competing for its binding to the C/H1 domain of CBP/p300 transcriptional co-activators. J Biol Chem 276(49):46297–46304

    Article  PubMed  CAS  Google Scholar 

  4. Fujii M, Lyakh LA, Bracken CP, Fukuoka J, Hayakawa M, Tsukiyama T, Soll SJ, Harris M, Rocha S, Roche KC, Tominaga S, Jen J, Perkins ND, Lechleider RJ, Roberts AB (2006) SNIP1 is a candidate modifier of the transcriptional activity of c-Myc on E box-dependent target genes. Mol Cell 24(5):771–783

    Article  PubMed  CAS  Google Scholar 

  5. Roche KC, Wiechens N, Owen-Hughes T, Perkins ND (2004) The FHA domain protein SNIP1 is a regulator of the cell cycle and cyclin D1 expression. Oncogene 23(50):8185–8195

    Article  PubMed  CAS  Google Scholar 

  6. Bracken CP, Wall SJ, Barré B, Panov KI, Ajuh PM, Perkins ND (2008) Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res 68(18):7621–7628

    Article  PubMed  CAS  Google Scholar 

  7. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11(1):1–12

    Article  PubMed  Google Scholar 

  8. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  9. Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239(4844):1139–1142

    Article  PubMed  CAS  Google Scholar 

  10. Fernandes M, Xiao H, Lis JT (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor–heat shock element interactions. Nucleic Acids Res 22(2):167–173

    Article  PubMed  CAS  Google Scholar 

  11. Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8(9):3761–3769

    PubMed  CAS  Google Scholar 

  12. Bonner JJ, Ballou C, Fackenthal DL (1994) Interactions between DNA-bound trimers of the yeast heat shock factor. Mol Cell Biol 14(1):501–508

    PubMed  CAS  Google Scholar 

  13. Topol J, Ruden DM, Parker CS (1985) Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell 42(2):527–537

    Article  PubMed  CAS  Google Scholar 

  14. Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64(3):585–593

    Article  PubMed  CAS  Google Scholar 

  15. Santoro N, Johansson N, Thiele DJ (1998) Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol Cell Biol 18(11):6340–6352

    PubMed  CAS  Google Scholar 

  16. Li Q, Liu X, Wu Y, An J, Hexige S, Ling Y, Zhang M, Yang X, Yu L (2011) The conditioned medium from a stable human GDF3-expressing CHO cell line, induces the differentiation of PC12 cells. Mol Cell Biochem. doi:10.1007/s11010-011-1005-0

    Google Scholar 

  17. Li Q, Liu X, Zhang M, Ye G, Qiao Q, Ling Y, Wu Y, Zhang Y, Yu L (2010) Characterization of a novel human CDK5 splicing variant that inhibits Wnt/beta-catenin signaling. Mol Biol Rep 37(5):2415–2421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973 program of China (2004CB518605), the National 863 project of China (2006AA020501), the National Key Sci-Tech Special Project of China (2008ZX10002-020), the Project of the Shanghai Municipal Science and Technology Commission (03dz14086), and the National Natural Science foundation of China (30024001, 30771188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., An, J., Liu, X. et al. SNIP1: a new activator of HSE signaling pathway. Mol Cell Biochem 362, 1–6 (2012). https://doi.org/10.1007/s11010-011-1120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1120-y

Keywords

Navigation