Skip to main content
Log in

mTOR-rictor is the Ser473 kinase for AKT1 in mouse one-cell stage embryos

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mammalian target of rapamycin (mTOR) controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. The mTORC2 containing mTOR and rictor is thought to be rapamycin insensitive and it is recently shown that both rictor and mTORC2 are essential for the development of both embryonic and extra embryonic tissues. To explore rictor function in the early development of mouse embryos, we disrupted the expression of rictor, a specific component of mTORC2, in mouse fertilized eggs by using rictor shRNA. Our results showed that one-cell stage eggs that were lack of rictor could not enter into the two-cell stage normally. Recent biochemical studies suggests that TORC2 is the elusive PDK2 (3′-phosphoinositide-dependent kinase 2) for AKT/PKB Ser473 phosphorylation, which is deemed necessary for AKT function, so we microinjected AKT-S473A into mouse fertilized eggs to investigate whether AKT-S473A is downstream effector of mTOR.rictor to regulate the mitotic division. Our findings revealed that the rictor induced phosphorylation of AKT in Ser473 is required for TORC2 function in early development of mouse embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lian J, Yan XH, Peng J, Jiang SW (2008) The mammalian target of rapamycin pathway and its role in molecular nutrition regulation. Mol Nutr Food Res 52(4):393–399

    Article  PubMed  CAS  Google Scholar 

  2. Drakos E, Rassidakis GZ, Medeiros LJ (2008) Mammalian target of rapamycin (mTOR) pathway signaling in lymphomas. Expert Rev Mol Med 10:e4

    Article  PubMed  Google Scholar 

  3. Harris TE, Lawrence JC Jr. (2003) TOR signaling. Sci STKE 9(212):1–17

    Google Scholar 

  4. Jacinto E, Hall MN (2003) Tor signaling in bugs, brain, and brawn. Nat Rev Mol Cell Biol 4(2):117–126

    Article  PubMed  CAS  Google Scholar 

  5. Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16(4):206–212

    Article  PubMed  CAS  Google Scholar 

  6. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  PubMed  CAS  Google Scholar 

  7. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaqa C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  PubMed  CAS  Google Scholar 

  8. Kim DH, Kuehn HS, Metcalfe DD, Gilfillan AM (2008) Activation and function of the mTORC1 pathway in mast cells. J Immunol 180(7):4586–4595

    PubMed  CAS  Google Scholar 

  9. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468

    Article  PubMed  CAS  Google Scholar 

  10. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and AKT/PKB. Mol Cell 22(2):159–168

    Article  PubMed  CAS  Google Scholar 

  11. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  PubMed  CAS  Google Scholar 

  12. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  PubMed  CAS  Google Scholar 

  13. Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signaling by intracellular amino acid availability. Biochem J 372(Pt 2):555–566

    Article  PubMed  CAS  Google Scholar 

  14. Choi KM, McMahon LP, Lawrence JC Jr (2003) Two motifs in the translational repressor PHASE-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 278(22):19667–19673

    Article  PubMed  CAS  Google Scholar 

  15. Nojima H, Tokunaqa C, Equchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464

    Article  PubMed  CAS  Google Scholar 

  16. Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13(10):797–806

    Article  PubMed  CAS  Google Scholar 

  17. Huang J, Dibble CC, Matsuzaki M, Manning BD (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28(12):4104–4115

    Article  PubMed  CAS  Google Scholar 

  18. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945

    Article  PubMed  CAS  Google Scholar 

  19. Akcakanat A, Singh G, Huang MC, Meric-Bemstam F (2007) Rapamycin regulates the phosphorylation of rictor. Biochem Biophys Res Commun 362(2):330–333

    Article  PubMed  CAS  Google Scholar 

  20. Hresko RC, Mueckler M (2005) mTOR.rictor is the Ser473 kinase for AKT/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416

    Article  PubMed  CAS  Google Scholar 

  21. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  22. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signaling pathway in cancer, therapeutic implications. Curr Cancer Drug Target 8(3):187–198

    Article  CAS  Google Scholar 

  23. Cicenas J (2008) The potential role of AKT phosphorylation in human cancers. Int J Biol Markers 23(1):1–9

    PubMed  CAS  Google Scholar 

  24. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signaling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242

    Article  PubMed  CAS  Google Scholar 

  25. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of AKT/protein kinase B in metabolism. Trends Endocrinol Metab 13(10):222–251

    Article  Google Scholar 

  26. Ma K, Cheung SM, Marshall AJ, Duronio V (2008) PI (3, 4, 5) P3 and PI (3, 4) P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI (3, 4) P2 levels determine PKB activity. Cell Signal 20(4):684–694

    Article  PubMed  CAS  Google Scholar 

  27. Xin X, Chen S, Khan ZA, Chakrabarti S (2007) AKT activation and augmented fibronectin production in hyperhexosemia. Am J Physiol Endocrinol Metabl 293(4):E1036–E1044

    Article  CAS  Google Scholar 

  28. Dong LQ, Liu F (2005) PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab 289(2):E187–E196

    Article  PubMed  CAS  Google Scholar 

  29. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitor: effects on mTORC1 and AKT signaling lead to improved survival and function. J Neurosci 28(21):5422–5432

    Article  PubMed  CAS  Google Scholar 

  30. Rosen N, She QB (2006) AKT and cancer—is it all mTOR? Cancer Cell 10(4):254–256

    Article  PubMed  CAS  Google Scholar 

  31. Hogan B, Constantini LE (1986) Manipulating the mouse embryos, a laboratory manual. Cold Spring Harbor Laboratory Press, NY, pp 249–256

    Google Scholar 

  32. Feng C, Yu A, Liu Y, Zhang J, Zong Z, Su W, Zhang Z, Yu D, Sun QY, Yu B (2007) Involvement of protein kinase B/AKT in early development of mouse fertilized eggs. Biol Reprod 77(3):560–568

    Article  PubMed  CAS  Google Scholar 

  33. Laemmli VK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  34. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL (2008) Essential function of TORC2 in PKC and AKT turn motif phosphorylation, maturation and signaling. EMBO J 27(16):2270

    Article  CAS  Google Scholar 

  35. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of AKT and protein kinase C. EMBO J 27(14):1932–1943

    Article  PubMed  CAS  Google Scholar 

  36. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, Gera J (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67(24):11712–11720

    Article  PubMed  CAS  Google Scholar 

  37. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  PubMed  CAS  Google Scholar 

  38. Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R (2007) Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Circ Res 100(1):79–87

    Article  PubMed  CAS  Google Scholar 

  39. Kim DH, Sabatini DM (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Topics Microbiol Immunol 279:259–270

    Article  CAS  Google Scholar 

  40. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  PubMed  CAS  Google Scholar 

  41. Martin J, Masri J, Bemath A, Nishimura RN, Gera J (2008) Hsp70 associates with rictor and is requierd for mTORC2 formation and activity. Biochem Biophys Res Commun 372(4):578–583

    Article  PubMed  CAS  Google Scholar 

  42. Lee G, Chung J (2007) Discrete functions of rictor and raptor in cell growth regulation in Drosophila. Biochem Biophys Res Commun 357(4):1154–1159

    Article  PubMed  CAS  Google Scholar 

  43. Wullschleger S, Loewith R, Oppliger W, Hall MN (2005) Molecular organization of target of rapamycin complex 2. J Biol Chem 280:30697–30704

    Article  PubMed  CAS  Google Scholar 

  44. Yaba A, Bianchi V, Borini A, Johnson J (2008) A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulose cells. Reprod Sci 15(2):128–138

    Article  PubMed  CAS  Google Scholar 

  45. McDonald PC, Oloumi A, Mills J, Dobreva I, Maidan M, Gray V, Wederell ED, Bally MB, Foster LJ, Dedhar S (2008) Rictor and integrin-linked kinase interact and regulate AKT phosphorylation and cancer cell survival. Cancer Res 68(6):1618–1624

    Article  PubMed  CAS  Google Scholar 

  46. Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20):2820–2832

    Article  PubMed  CAS  Google Scholar 

  47. Dada S, Demartines N, Dormond O (2008) mTORC2 regulate PGE(2)-mediated endothelial cell survival and migration. Biochem Biophys Res Commun 372(4):875–879

    Article  PubMed  CAS  Google Scholar 

  48. Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, Giles FJ, Sabatini DM, Andreeff M, Konopleva M (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 109(8):3509–3512

    Article  PubMed  CAS  Google Scholar 

  49. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaanv NY, Moffat J, Brown M, Fitzqerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor or mLST8 reveals that mTORC2 is required for signaling to AKT-FOXO and PKC alpha, but not S6K1. Dev Cell 11(6):859–871

    Article  PubMed  CAS  Google Scholar 

  50. Kumar A, Harris TE, Keller SR, Choi KM, Maqnuson MA, Lawrence JC Jr (2008) Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enchances basal glycogen synthase activity. Mol Cell Biol 28(1):61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Estella Jacinto (University of Basel, Switzerland) for presenting the constructs of raptor shRNA and rictor shRNA as a gift. We also thank PhD. Chen Feng (Dept. of biochemistry and molecular biology, China Medical University, China) for offering the wild-type AKT1 plasmid (pBS-AKT1-WT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingzhi Yu.

Additional information

The study was supported by National Natural Science Foundation of China (81070489).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhang, G., Xu, X. et al. mTOR-rictor is the Ser473 kinase for AKT1 in mouse one-cell stage embryos. Mol Cell Biochem 361, 249–257 (2012). https://doi.org/10.1007/s11010-011-1110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1110-0

Keywords

Navigation