Skip to main content

Advertisement

Log in

Interleukin-23 as a potential therapeutic target for rheumatoid arthritis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases, including rheumatoid arthritis (RA). Increasing evidence has revealed the importance of IL-23, which closely resembles IL-12 structurally and immunologically, in linking innate and adaptive immunity. IL-23, a newly identified heterodimeric pro-inflammatory cytokine, is composed of a p40 subunit in common with IL-12 and a unique p19 subunit. Recent evidence suggests that IL-23, rather than IL-12, is the crucial factor in the pathogenesis of various immune-mediated disorders. In addition, recent studies have explored the role of IL-23 in patients with RA. An elevated expression of IL-23 has been demonstrated in the synovial fibroblasts and plasma of patients with RA. Moreover, an association between IL-23 and IL-23R polymorphisms with susceptibility to RA has been reported. Therefore, the targeting of IL-23 or the IL-23 receptor has been proposed as a potential therapeutic approach for RA. In this review we will discuss the biological features of IL-23, and summarize recent advances in our understanding of the role of IL-23 in the pathogenesis and treatment of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li X, Yuan FL, Lu WG, Zhao YQ, Li CW, Li JP, Xu RS (2010) The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochem Biophys Res Commun 397:131–135

    Article  PubMed  CAS  Google Scholar 

  2. Partsch G, Steiner G, Leeb BF, Dunky A, Broll H, Smolen JS (1997) Highly increased levels of tumor necrosis factor-alpha and other proinflammatory cytokines in psoriatic arthritis synovial fluid. J Rheumatol 24:518–523

    PubMed  CAS  Google Scholar 

  3. Steiner G, Tohidast-Akrad M, Witzmann G, Vesely M, Studnicka-Benke A, Gal A, Kunaver M, Zenz P, Smolen JS (1999) Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxford) 38:202–213

    Article  CAS  Google Scholar 

  4. Firestein GS, Alvaro-Gracia JM, Maki R (1990) Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 144:3347–3353

    PubMed  CAS  Google Scholar 

  5. Popa C, van Tits LJ, Barrera P, Lemmers HL, van den Hoogen FH, van Riel PL, Radstake TR, Netea MG, Roest M, Stalenhoef AF (2009) Anti-inflammatory therapy with tumour necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann Rheum Dis 68:868–872

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki H, Ayabe T, Kamimura J, Kashiwagi H (1991) Anti-IL-1 alpha autoantibodies in patients with rheumatic diseases and in healthy subjects. Clin Exp Immunol 85:407–412

    Article  PubMed  CAS  Google Scholar 

  7. Patel AM, Moreland LW (2010) Interleukin-6 inhibition for treatment of rheumatoid arthritis: a review of tocilizumab therapy. Drug Des Devel Ther 4:263–278

    PubMed  Google Scholar 

  8. Nuki G, Bresnihan B, Bear MB, McCabe D (2002) Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46:2838–2846

    Article  PubMed  CAS  Google Scholar 

  9. Wolfe F, Michaud K (2004) Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18, 572 patients. Arthritis Rheum 50:1740–1751

    Article  PubMed  CAS  Google Scholar 

  10. Ooi JD, Phoon RK, Holdsworth SR, Kitching AR (2009) IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J Am Soc Nephrol 20:980–989

    Article  PubMed  CAS  Google Scholar 

  11. Brentano F, Ospelt C, Stanczyk J, Gay RE, Gay S, Kyburz D (2009) Abundant expression of the interleukin (IL)23 subunit p19, but low levels of bioactive IL23 in the rheumatoid synovium: differential expression and Toll-like receptor-(TLR) dependent regulation of the IL23 subunits, p19 and p40, in rheumatoid arthritis. Ann Rheum Dis 68:143–150

    Article  PubMed  CAS  Google Scholar 

  12. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, Villanova F, Tosi I, Capon F, Trembath RC, Peris K, Nestle FO (2011) The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One 6:e17160

    Article  PubMed  CAS  Google Scholar 

  13. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ, Leong DU, Panko JM, McAllister LB, Hansen CB, Papenfuss J, Prescott SM, White TJ, Leppert MF, Krueger GG, Begovich AB (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80:273–290

    Article  PubMed  CAS  Google Scholar 

  14. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  PubMed  CAS  Google Scholar 

  15. Izcue A, Hue S, Buonocore S, Arancibia-Carcamo CV, Ahern PP, Iwakura Y, Maloy KJ, Powrie F (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28:559–570

    Article  PubMed  CAS  Google Scholar 

  16. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    Article  PubMed  CAS  Google Scholar 

  17. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  18. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057

    Article  PubMed  CAS  Google Scholar 

  19. Wendling D (2008) Interleukin 23: a key cytokine in chronic inflammatory disease. Joint Bone Spine 75:517–519

    Article  PubMed  CAS  Google Scholar 

  20. Kageyama Y, Kobayashi H, Kato N (2009) Infliximab treatment reduces the serum levels of interleukin-23 in patients with rheumatoid arthritis. Mod Rheumatol 19:657–662

    Article  PubMed  CAS  Google Scholar 

  21. Goriely S, Goldman M (2008) Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant 13:4–9

    Article  PubMed  Google Scholar 

  22. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  PubMed  CAS  Google Scholar 

  23. Lupardus PJ, Garcia KC (2008) The structure of interleukin-23 reveals the molecular basis of p40 subunit sharing with interleukin-12. J Mol Biol 382:931–941

    Article  PubMed  CAS  Google Scholar 

  24. Yoshida A, Koide Y, Uchijima M, Yoshida TO (1994) IFN-gamma induces IL-12 mRNA expression by a murine macrophage cell line, J774. Biochem Biophys Res Commun 198:857–861

    Article  PubMed  CAS  Google Scholar 

  25. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105

    Article  PubMed  CAS  Google Scholar 

  26. Bettelli E, Kuchroo VK (2005) IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J Exp Med 201:169–171

    Article  PubMed  CAS  Google Scholar 

  27. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  28. McKenzie BS, Kastelein RA, Cua DJ (2006) Understanding the IL-23-IL-17 immune pathway. Trends Immunol 27:17–23

    Article  PubMed  CAS  Google Scholar 

  29. Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116:1218–1222

    Article  PubMed  CAS  Google Scholar 

  30. Beadling C, Slifka MK (2006) Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27. Arch Immunol Ther Exp (Warsz) 54:15–24

    Article  CAS  Google Scholar 

  31. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–242

    Article  PubMed  CAS  Google Scholar 

  32. van de Vosse E, Lichtenauer-Kaligis EG, van Dissel JT, Ottenhoff TH (2003) Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function. Immunogenetics 54:817–829

    PubMed  Google Scholar 

  33. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal Malefyt R, Moore KW (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708

    PubMed  CAS  Google Scholar 

  34. Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A (2007) Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 9:461–467

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z, Andoh A, Yasui H, Inatomi O, Hata K, Tsujikawa T, Kitoh K, Takayanagi A, Shimizu N, Fujiyama Y (2005) Interleukin-1beta and tumor necrosis factor-alpha upregulate interleukin-23 subunit p19 gene expression in human colonic subepithelial myofibroblasts. Int J Mol Med 15:79–83

    PubMed  CAS  Google Scholar 

  36. Liu FL, Chen CH, Chu SJ, Chen JH, Lai JH, Sytwu HK, Chang DM (2007) Interleukin (IL)-23 p19 expression induced by IL-1beta in human fibroblast-like synoviocytes with rheumatoid arthritis via active nuclear factor-kappaB and AP-1 dependent pathway. Rheumatology (Oxford) 46:1266–1273

    Article  CAS  Google Scholar 

  37. Sheibanie AF, Khayrullina T, Safadi FF, Ganea D (2007) Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum 56:2608–2619

    Article  PubMed  CAS  Google Scholar 

  38. Lankford CS, Frucht DM (2003) A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 73:49–56

    Article  PubMed  CAS  Google Scholar 

  39. Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18:349–356

    Article  PubMed  CAS  Google Scholar 

  40. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  PubMed  CAS  Google Scholar 

  41. Paradowska-Gorycka A, Grzybowska-Kowalczyk A, Wojtecka-Lukasik E, Maslinski S (2010) IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 71:134–145

    Article  PubMed  CAS  Google Scholar 

  42. Tan ZY, Bealgey KW, Fang Y, Gong YM, Bao S (2009) Interleukin-23: immunological roles and clinical implications. Int J Biochem Cell Biol 41:733–735

    Article  PubMed  CAS  Google Scholar 

  43. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  PubMed  CAS  Google Scholar 

  44. Wiekowski MT, Leach MW, Evans EW, Sullivan L, Chen SC, Vassileva G, Bazan JF, Gorman DM, Kastelein RA, Narula S, Lira SA (2001) Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 166:7563–7570

    PubMed  CAS  Google Scholar 

  45. Belladonna ML, Renauld JC, Bianchi R, Vacca C, Fallarino F, Orabona C, Fioretti MC, Grohmann U, Puccetti P (2002) IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 168:5448–5454

    PubMed  CAS  Google Scholar 

  46. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  PubMed  CAS  Google Scholar 

  47. Kim HR, Cho ML, Kim KW, Juhn JY, Hwang SY, Yoon CH, Park SH, Lee SH, Kim HY (2007) Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-kappaB- and p38 MAPK-dependent signalling pathways. Rheumatology (Oxford) 46:57–64

    Article  CAS  Google Scholar 

  48. Kim HR, Kim HS, Park MK, Cho ML, Lee SH, Kim HY (2007) The clinical role of IL-23p19 in patients with rheumatoid arthritis. Scand J Rheumatol 36:259–264

    Article  PubMed  CAS  Google Scholar 

  49. Ju JH, Cho ML, Moon YM, Oh HJ, Park JS, Jhun JY, Min SY, Cho YG, Park KS, Yoon CH, Min JK, Park SH, Sung YC, Kim HY (2008) IL-23 induces receptor activator of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J Immunol 181:1507–1518

    PubMed  CAS  Google Scholar 

  50. Rasmussen TK, Andersen T, Hvid M, Hetland ML, Horslev-Petersen K, Stengaard-Pedersen K, Holm CK, Deleuran B (2010) Increased interleukin 21 (IL-21) and IL-23 are associated with increased disease activity and with radiographic status in patients with early rheumatoid arthritis. J Rheumatol 37:2014–2020

    Article  PubMed  CAS  Google Scholar 

  51. Melis L, Vandooren B, Kruithof E, Jacques P, De Vos M, Mielants H, Verbruggen G, De Keyser F, Elewaut D (2010) Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondylarthritis. Ann Rheum Dis 69:618–623

    Article  PubMed  CAS  Google Scholar 

  52. Farago B, Magyari L, Safrany E, Csongei V, Jaromi L, Horvatovich K, Sipeky C, Maasz A, Radics J, Gyetvai A, Szekanecz Z, Czirjak L, Melegh B (2008) Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann Rheum Dis 67:248–250

    Article  PubMed  CAS  Google Scholar 

  53. Orozco G, Rueda B, Robledo G, Garcia A, Martin J (2007) Investigation of the IL23R gene in a Spanish rheumatoid arthritis cohort. Hum Immunol 68:681–684

    Article  PubMed  CAS  Google Scholar 

  54. Park JH, Kim YJ, Park BL, Bae JS, Shin HD, Bae SC (2009) Lack of association between interleukin 23 receptor gene polymorphisms and rheumatoid arthritis susceptibility. Rheumatol Int 29:781–786

    Article  PubMed  CAS  Google Scholar 

  55. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S (2007) IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9:R96

    Article  PubMed  Google Scholar 

  56. Kageyama Y, Ichikawa T, Nagafusa T, Torikai E, Shimazu M, Nagano A (2007) Etanercept reduces the serum levels of interleukin-23 and macrophage inflammatory protein-3 alpha in patients with rheumatoid arthritis. Rheumatol Int 28:137–143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the China National Science Foundation Grants No. 30873080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-hu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, C., Hu, W., Wu, Fr. et al. Interleukin-23 as a potential therapeutic target for rheumatoid arthritis. Mol Cell Biochem 361, 243–248 (2012). https://doi.org/10.1007/s11010-011-1109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1109-6

Keywords

Navigation