Skip to main content
Log in

CTCF and cohesin cooperatively mediate the cell-type specific interchromatin interaction between Bcl11b and Arhgap6 loci

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CCCTC-binding factor (CTCF) is a master organizer of genome spatial organization and plays an important role in mediating extensive chromatin interactions. Circular chromosome conformation capture (4C) is a high-throughput approach that allows genome-wide screening for unknown potential interaction partners. Using a conserved CTCF binding site on the Bcl11b locus as bait, an interaction partner at the Arhgap6 locus on a different chromosome was identified by 4C. Additional experiments verified that the interchromatin interaction between the Bcl11b and Arhgap6 loci was cell-type specific, which was cooperatively mediated by CTCF and cohesin. Functional analysis showed that the interchromatin interaction partners were repressing regulatory elements. These results indicate that interaction chromatin loops regulate the expression of the relevant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTCF:

CCCTC-binding factor

3C:

Chromosome conformation capture

4C:

Circular chromosome conformation capture

BCL11B:

B-cell lymphoma/leukemia 11B

ChIP:

Chromatin immunoprecipitation

3D DNA-FISH:

Three dimensional DNA fluorescence in situ hybridization

Q-PCR:

Quantitative PCR

References

  1. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1195

    Article  PubMed  Google Scholar 

  2. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  PubMed  CAS  Google Scholar 

  3. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4:805–901

    Article  Google Scholar 

  4. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and inter-chromosomal interactions. Nat Genet 38:1341–1347

    Article  PubMed  CAS  Google Scholar 

  5. Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312:269–272

    Article  PubMed  CAS  Google Scholar 

  6. Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149–1152

    Article  PubMed  CAS  Google Scholar 

  7. Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RDG, Chenoweth JG, Tesar PJ, Furey TS, Ren B, Weng Z, Crawford GE (2007) Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet 3:1377–1388

    Article  CAS  Google Scholar 

  8. Avram D, Field A, On Top KP, Nevriv DJ, Ishmael JE, Leid M (2000) Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 275:10315–10322

    Article  PubMed  CAS  Google Scholar 

  9. Cismasiu VB, Adamo K, Gecewicz J, Duque J, Lin Q, Avram D (2005) BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24:6753–6764

    Article  PubMed  CAS  Google Scholar 

  10. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S, Kominami R (2003) Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat Immun 4:533–539

    Article  CAS  Google Scholar 

  11. Albu DI, Feng D, Bhattacharya D, Jenkins NA, Copeland NG, Liu P, Avram D (2007) BCL11B is required for positive selection and survival of double-positive thymocytes. J Exp Med 204:3003–3015

    Article  PubMed  CAS  Google Scholar 

  12. Göndör A, Rougier C, Ohlsson R (2008) High-resolution circular chromosome conformation capture assay. Nat Protoc 3:303–313

    Article  PubMed  Google Scholar 

  13. Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733

    Article  PubMed  Google Scholar 

  14. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    Article  PubMed  CAS  Google Scholar 

  15. Horike S, Cai S, Miyano M, Cheng J, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  PubMed  CAS  Google Scholar 

  16. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38:1278–1288

    Article  PubMed  CAS  Google Scholar 

  17. Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  PubMed  CAS  Google Scholar 

  18. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-a-bound human chromatin interactome. Nature 462:58–64

    Article  PubMed  CAS  Google Scholar 

  19. Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  PubMed  CAS  Google Scholar 

  20. Nasmyth K, Haering C (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558

    Article  PubMed  CAS  Google Scholar 

  21. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  PubMed  CAS  Google Scholar 

  22. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  23. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT, Schones DE, Peng W, Sun HW, Paul WE, O’Shea JJ, Zhao K (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    Article  PubMed  Google Scholar 

  24. Rodriguez C, Borgel J, Court F, Cathala G, Forne T, Piette J (2010) CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem Biophys Res Commun 392:129–134

    Article  PubMed  CAS  Google Scholar 

  25. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  PubMed  CAS  Google Scholar 

  26. Tybulewicz VL, Henderson RB (2009) Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9:630–644

    Article  PubMed  CAS  Google Scholar 

  27. Prakash SK, Paylor R, Jenna S, Lamarche-Vane N, Armstrong DL, Xu B, Mancini MA, Zoghbi HY (2000) Functional anaysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum Mol Genet 9:477–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (30871374, 31071119, 31030026), and the National Key Basis Research Program of China (973) (2009CB825602). We should appreciate Dr. Christopher Brooks (Bioscience Editing Solutions) for revising language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihu Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Shi, M., Wang, Y. et al. CTCF and cohesin cooperatively mediate the cell-type specific interchromatin interaction between Bcl11b and Arhgap6 loci. Mol Cell Biochem 360, 243–251 (2012). https://doi.org/10.1007/s11010-011-1063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1063-3

Keywords

Navigation