Skip to main content

Advertisement

Log in

Association between polymorphisms in the signal transducer and activator of transcription and dilated cardiomyopathy in the Chinese Han population

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The signal transduction pathways mediating the progress of heart failure have been intensively studied. Altered signaling of the signal transducers and activators of transcription (STATs), which play important roles in regulating cell proliferation, differentiation, and apoptosis, has been observed in the heart. We conducted a pilot study to test whether single nucleotide polymorphisms (SNPs) in STATs were associated with dilated cardiomyopathy (DCM). Genotypes of two SNPs of STATs (rs6503691 C/T in exon 1 of STAT5B and rs4796793 C/G in the 5′ region of STAT3) in 251 DCM patients and 484 control subjects were determined with the use of PCR–restriction fragment length polymorphism assay and TaqMan assay, respectively. Significantly increased DCM risk was found to be associated with T allele of rs6503691 (P = 0.012, OR = 1.37, 95% CI = 1.07–1.74). We found that increased DCM risk statistically significantly associated with rs6503691 in a dominant model (P = 0.009, OR = 1.50, 95% CI = 1.11–2.04). No association between DCM risk and rs4796793 was observed (P = 0.706, OR = 1.05, 95% CI = 0.83–1.32). The present pilot study provides evidence that both rs6503691 T allele and CT/TT genotypes, but not rs4796793 C/G in the 5′ region of STAT3, are associated with a significantly increased risk of DCM, indicating that common genetic polymorphism in STATs is associated with DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656

    Article  PubMed  CAS  Google Scholar 

  2. Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233

    Article  PubMed  CAS  Google Scholar 

  3. Karkkainen S, Peuhkurinen K (2007) Genetics of dilated cardiomyopathy. Ann Med 39:91–107

    Article  PubMed  CAS  Google Scholar 

  4. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    Article  PubMed  CAS  Google Scholar 

  5. Towbin JA, Solaro RJ (2004) Genetics of dilated cardiomyopathy: more genes that kill. J Am Coll Cardiol 44:2041–2043

    Article  PubMed  CAS  Google Scholar 

  6. Baig MK, Goldman JH, Caforio AL, Coonar AS, Keeling PJ, McKenna WJ (1998) Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 31:195–201

    Article  PubMed  CAS  Google Scholar 

  7. DeWitt MM, MacLeod HM, Soliven B, McNally EM (2006) Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J Am Coll Cardiol 48:1396–1398

    Article  PubMed  CAS  Google Scholar 

  8. Stambader JD, Dorn L, Mikuz G, Sergi C (2010) Genetic polymorphisms in dilated cardiomyopathy. Front Biosci (Schol Ed) 2:653–676

    Article  Google Scholar 

  9. Charron P, Komajda M (2002) Genes and their polymorphisms in mono- and multifactorial cardiomyopathies: towards pharmacogenomics in heart failure. Pharmacogenomics 3:367–378

    Article  PubMed  CAS  Google Scholar 

  10. Zhou B, Rao L, Peng Y, Wang Y, Chen Y, Song Y, Zhang L (2010) Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta 411:1287–1290

    Article  PubMed  CAS  Google Scholar 

  11. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Muller W, Chien KR (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198

    Article  PubMed  CAS  Google Scholar 

  12. Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, Okabe M, Kishimoto T, Yamauchi-Takihara K (2000) Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 97:315–319

    Article  PubMed  CAS  Google Scholar 

  13. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  14. Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T et al (1994) Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263:89–92

    Article  PubMed  CAS  Google Scholar 

  15. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104:979–981

    Article  PubMed  CAS  Google Scholar 

  16. Hirota H, Yoshida K, Kishimoto T, Taga T (1995) Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 92:4862–4866

    Article  PubMed  CAS  Google Scholar 

  17. Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T (1998) Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 98:346–352

    PubMed  CAS  Google Scholar 

  18. Podewski EK, Hilfiker-Kleiner D, Hilfiker A, Morawietz H, Lichtenberg A, Wollert KC, Drexler H (2003) Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation 107:798–802

    Article  PubMed  CAS  Google Scholar 

  19. Ng DC, Court NW, dos Remedios CG, Bogoyevitch MA (2003) Activation of signal transducer and activator of transcription (STAT) pathways in failing human hearts. Cardiovasc Res 57:333–346

    Article  PubMed  CAS  Google Scholar 

  20. Kreil S, Waghorn K, Ernst T, Chase A, White H, Hehlmann R, Reiter A, Hochhaus A, Cross NC (2010) A polymorphism associated with STAT3 expression and response of chronic myeloid leukemia to interferon alpha. Haematologica 95:148–152

    Article  PubMed  CAS  Google Scholar 

  21. Ito N, Eto M, Nakamura E, Takahashi A, Tsukamoto T, Toma H, Nakazawa H, Hirao Y, Uemura H, Kagawa S, Kanayama H, Nose Y, Kinukawa N, Nakamura T, Jinnai N, Seki T, Takamatsu M, Masui Y, Naito S, Ogawa O (2007) STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J Clin Oncol 25:2785–2791

    Article  PubMed  CAS  Google Scholar 

  22. Vaclavicek A, Bermejo JL, Schmutzler RK, Sutter C, Wappenschmidt B, Meindl A, Kiechle M, Arnold N, Weber BH, Niederacher D, Burwinkel B, Bartram CR, Hemminki K, Forsti A (2007) Polymorphisms in the Janus kinase 2 (JAK)/signal transducer and activator of transcription (STAT) genes: putative association of the STAT gene region with familial breast cancer. Endocr Relat Cancer 14:267–277

    Article  PubMed  CAS  Google Scholar 

  23. Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, Duan H, Karunasinghe N (2010) Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat Res 690:108–115

    Article  PubMed  CAS  Google Scholar 

  24. Sookoian S, Castano G, Gianotti TF, Gemma C, Rosselli MS, Pirola CJ (2008) Genetic variants in STAT3 are associated with nonalcoholic fatty liver disease. Cytokine 44:201–206

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Kao WH, Berthier-Schaad Y, Liu Y, Plantinga L, Jaar BG, Fink N, Powe N, Klag MJ, Smith MW, Coresh J (2006) Haplotype of signal transducer and activator of transcription 3 gene predicts cardiovascular disease in dialysis patients. J Am Soc Nephrol 17:2285–2292

    Article  PubMed  CAS  Google Scholar 

  26. Finan RR, Mustafa FE, Al-Zaman I, Madan S, Issa AA, Almawi WY (2010) STAT3 polymorphisms linked with idiopathic recurrent miscarriages. Am J Reprod Immunol 63:22–27

    Article  PubMed  CAS  Google Scholar 

  27. Wang K, Zhou B, Zhang J, Xin Y, Lai T, Wang Y, Hou Q, Song Y, Chen Y, Quan Y, Xi M and Zhang L (2011) Association of Signal Transducer and Activator of Transcription 3 Gene Polymorphisms with Cervical Cancer in Chinese Women. DNA Cell Biol. doi:10.1089/dna.2010.1179

  28. Makimura M, Ihara K, Kojima-Ishii K, Nozaki T, Ohkubo K, Kohno H, Kishimoto J, Hara T (2011) The signal transducer and activator of transcription 5B gene polymorphism contributes to the cholesterol metabolism in Japanese children with growth hormone deficiency. Clin Endocrinol (Oxf) 74:611–617

    Article  CAS  Google Scholar 

  29. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  PubMed  CAS  Google Scholar 

  30. Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375:752–762

    Article  PubMed  Google Scholar 

  31. Ichihara S, Yamada Y, Yokota M (1998) Association of a G994–>T missense mutation in the plasma platelet-activating factor acetylhydrolase gene with genetic susceptibility to nonfamilial dilated cardiomyopathy in Japanese. Circulation 98:1881–1885

    PubMed  CAS  Google Scholar 

  32. Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB (2002) Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347:1135–1142

    Article  PubMed  CAS  Google Scholar 

  33. Tang LJ, Chen XF, Zhu M, Jiang JJ, Lu XB, Du YX, Wang B, Fang CF, Xue YS, Shen WF (2007) Matrix metalloproteinase-1, -3, and -9 gene polymorphisms and the risk of idiopathic dilated cardiomyopathy in a Chinese Han population. Clin Biochem 40:1427–1430

    Article  PubMed  CAS  Google Scholar 

  34. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  35. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185

    Article  PubMed  CAS  Google Scholar 

  36. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297

    Article  PubMed  CAS  Google Scholar 

  37. Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY (2003) Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 100:12929–12934

    Article  PubMed  CAS  Google Scholar 

  38. Yamauchi-Takihara K (2008) gp130-mediated pathway and heart failure. Future Cardiol 4:427–437

    Article  PubMed  CAS  Google Scholar 

  39. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195

    Article  PubMed  CAS  Google Scholar 

  40. Osugi T, Oshima Y, Fujio Y, Funamoto M, Yamashita A, Negoro S, Kunisada K, Izumi M, Nakaoka Y, Hirota H, Okabe M, Yamauchi-Takihara K, Kawase I, Kishimoto T (2002) Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem 277:6676–6681

    Article  PubMed  CAS  Google Scholar 

  41. Ruppert V, Meyer T (2007) JAK-STAT signaling circuits in myocarditis and dilated cardiomyopathy. Herz 32:474–481

    Article  PubMed  Google Scholar 

  42. Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H (2006) Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy 2:212–214

    PubMed  CAS  Google Scholar 

  43. Hilfiker-Kleiner D, Limbourg A, Drexler H (2005) STAT3-mediated activation of myocardial capillary growth. Trends Cardiovasc Med 15:152–157

    Article  PubMed  CAS  Google Scholar 

  44. Chen Z, Han ZC (2008) STAT3: a critical transcription activator in angiogenesis. Med Res Rev 28:185–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30871044), the Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province (Nos. 2008SZ0174-1, 2010JY0013 and 2010SZ0180), and by Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Rao.

Additional information

Ying Peng and Bin Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Zhou, B., Wang, Y. et al. Association between polymorphisms in the signal transducer and activator of transcription and dilated cardiomyopathy in the Chinese Han population. Mol Cell Biochem 360, 197–203 (2012). https://doi.org/10.1007/s11010-011-1057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1057-1

Keywords

Navigation