Skip to main content

Advertisement

Log in

Benzyl isothiocyanate inhibits basal and hepatocyte growth factor-stimulated migration of breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Benzyl isothiocyanate (BITC), which is found in cruciferous vegetables, has been shown to have anti-carcinogenic properties. Hepatocyte growth factor (HGF) has the ability to stimulate dissociation, migration, and invasion in various tumor cells, and abnormally increased expressions of HGF and its transmembrane tyrosine kinase receptor, c-Met, have previously been detected in human breast cancer, and are associated with high tumor grade and poor prognosis. In this study, in order to assess the mechanisms relevant to the BITC-induced regulation of breast cancer cell migration and invasion, MDA-MB-231 human breast cancer cells and 4T1 murine mammary carcinoma cells were cultured in the presence of 0–4 μmol/l BITC with or without 10 μg/l of HGF. BITC inhibited both the basal and HGF-induced migration of MDA-MB-231 and 4T1 cells in a dose-dependent manner. In MDA-MB-231 cells, BITC reduced both basal and HGF-induced secretion and activity of urokinase-type plasminogen activator (uPA). In addition, BITC increased the protein levels of plasminogen activator inhibitor-1. HGF stimulated c-Met and Akt phosphorylation, but did not affect the phosphorylation of extracellular signal-regulated kinase-1/2 or stress-activated protein/c-jun N-terminal kinase. BITC suppressed NF-κB activity and reduced the HGF-induced phosphorylation of c-Met and Akt in a dose-dependent manner. LY294002, a specific Akt inhibitor, reduced both basal and HGF-induced uPA secretion and migration of MDA-MB-231 cells. In this study, we demonstrated that BITC profoundly inhibits the migration and invasion of MDA-MB-231 cells, which is associated with reduced uPA activity, and also that these phenomena are accompanied by the suppression of Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN (2007) Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 608:1–22

    Article  PubMed  CAS  Google Scholar 

  3. Morse R, Rodgers J, Verrill M, Kendell K (2003) Neuropsychological functioning following systemic treatment in women treated for breast cancer: a review. Eur J Cancer 39:2288–2297

    Article  PubMed  CAS  Google Scholar 

  4. Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34:881–895

    PubMed  CAS  Google Scholar 

  5. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  6. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  7. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 53:35–69

    Article  PubMed  Google Scholar 

  8. Martin TA, Jiang WG (2010) Hepatocyte growth factor and its receptor signalling complex as targets in cancer therapy. Anticancer Agents Med Chem 10:2–6

    PubMed  CAS  Google Scholar 

  9. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR (1995) Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55:1129–1138

    PubMed  CAS  Google Scholar 

  10. Niranjan B, Buluwela L, Yant J, Perusinghe N, Atherton A, Phippard D, Dale T, Gusterson B, Kamalati T (1995) HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121:2897–2908

    PubMed  CAS  Google Scholar 

  11. Tolgay Ocal I, Dolled-Filhart M, D’Aquila TG, Camp RL, Rimm DL (2003) Tissue microarray-based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 97:1841–1848

    Article  PubMed  Google Scholar 

  12. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101–1105

    PubMed  CAS  Google Scholar 

  13. Maemura M, Iino Y, Yokoe T, Horiguchi J, Takei H, Koibuchi Y, Horii Y, Takeyoshi I, Ohwada S, Morishita Y (1998) Serum concentration of hepatocyte growth factor in patients with metastatic breast cancer. Cancer Lett 126:215–220

    Article  PubMed  CAS  Google Scholar 

  14. Toi M, Taniguchi T, Ueno T, Asano M, Funata N, Sekiguchi K, Iwanari H, Tominaga T (1998) Significance of circulating hepatocyte growth factor level as a prognostic indicator in primary breast cancer. Clin Cancer Res 4:659–664

    PubMed  CAS  Google Scholar 

  15. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  PubMed  CAS  Google Scholar 

  16. Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 64:2134–2142

    Article  PubMed  CAS  Google Scholar 

  17. Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25:1701–1709

    Article  PubMed  CAS  Google Scholar 

  18. Xiao D, Powolny AA, Singh SV (2008) Benzyl isothiocyanate targets mitochondrial respiratory chain to trigger reactive oxygen species-dependent apoptosis in human breast cancer cells. J Biol Chem 283:30151–30163

    Article  PubMed  CAS  Google Scholar 

  19. Warin R, Chambers WH, Potter DM, Singh SV (2009) Prevention of mammary carcinogenesis in MMTV-neu mice by cruciferous vegetable constituent benzyl isothiocyanate. Cancer Res 69:9473–9480

    Article  PubMed  CAS  Google Scholar 

  20. Lai KC, Huang AC, Hsu SC, Kuo CL, Yang JS, Wu SH, Chung JG (2010) Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem 58:2935–2942

    Article  PubMed  CAS  Google Scholar 

  21. Wu X, Zhu Y, Yan H, Liu B, Li Y, Zhou Q, Xu K (2010) Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. BMC Cancer 10:269

    Article  PubMed  Google Scholar 

  22. Kim EJ, Hong JE, Eom SJ, Lee JY, Park JH (2010) Oral administration of benzyl-isothiocyanate inhibits solid tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. Breast Cancer Res Treat. doi:10.1007/s10549-010-1299-8

  23. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, Thompson EW (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25:629–642

    Article  PubMed  CAS  Google Scholar 

  24. Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JH (2002) Trans-10, cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am J Physiol Gastrointest Liver Physiol 283:G357–G367

    PubMed  CAS  Google Scholar 

  25. Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH (2009) Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem 20(9):663–676

    Google Scholar 

  26. Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL, Park JH (2003) Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am J Physiol Gastrointest Liver Physiol 284:G996–G1005

    PubMed  CAS  Google Scholar 

  27. Kim EJ, Kang IJ, Cho HJ, Kim WK, Ha YL, Park JH (2003) Conjugated linoleic acid downregulates insulin-like growth factor-I receptor levels in HT-29 human colon cancer cells. J Nutr 133:2675–2681

    PubMed  CAS  Google Scholar 

  28. Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JH (2008) 3,3′-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 138:17–23

    PubMed  CAS  Google Scholar 

  29. Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S, Pestell RG, Goldberg ID, Rosen EM (2005) Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24:1749–1766

    Article  PubMed  CAS  Google Scholar 

  30. Lee WJ, Chen WK, Wang CJ, Lin WL, Tseng TH (2008) Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 226:178–191

    Article  PubMed  CAS  Google Scholar 

  31. Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647–654

    PubMed  CAS  Google Scholar 

  32. Crippa MP (2007) Urokinase-type plasminogen activator. Int J Biochem Cell Biol 39:690–694

    Article  PubMed  CAS  Google Scholar 

  33. Meijer-van Gelder ME, Look MP, Peters HA, Schmitt M, Brunner N, Harbeck N, Klijn JG, Foekens JA (2004) Urokinase-type plasminogen activator system in breast cancer: association with tamoxifen therapy in recurrent disease. Cancer Res 64:4563–4568

    Article  PubMed  CAS  Google Scholar 

  34. Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48:1194–1197

    PubMed  CAS  Google Scholar 

  35. Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD, Brunner N, Janicke F, Meijer-van Gelder ME, Henzen-Logmans SC, van Putten WL, Klijn JG (2000) The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60:636–643

    PubMed  CAS  Google Scholar 

  36. Shirasuna K, Saka M, Hayashido Y, Yoshioka H, Sugiura T, Matsuya T (1993) Extracellular matrix production and degradation by adenoid cystic carcinoma cells: participation of plasminogen activator and its inhibitor in matrix degradation. Cancer Res 53:147–152

    PubMed  CAS  Google Scholar 

  37. Stefansson S, Lawrence DA (1996) The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383:441–443

    Article  PubMed  CAS  Google Scholar 

  38. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77:261–271

    Article  PubMed  CAS  Google Scholar 

  39. Delehedde M, Sergeant N, Lyon M, Rudland PS, Fernig DG (2001) Hepatocyte growth factor/scatter factor stimulates migration of rat mammary fibroblasts through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways. Eur J Biochem 268:4423–4429

    Article  PubMed  CAS  Google Scholar 

  40. Sipeki S, Bander E, Buday L, Farkas G, Bacsy E, Ways DK, Farago A (1999) Phosphatidylinositol 3-kinase contributes to Erk1/Erk2 MAP kinase activation associated with hepatocyte growth factor-induced cell scattering. Cell Signal 11:885–890

    Article  PubMed  CAS  Google Scholar 

  41. Auer KL, Contessa J, Brenz-Verca S, Pirola L, Rusconi S, Cooper G, Abo A, Wymann MP, Davis RJ, Birrer M, Dent P (1998) The Ras/Rac1/Cdc42/SEK/JNK/c-Jun cascade is a key pathway by which agonists stimulate DNA synthesis in primary cultures of rat hepatocytes. Mol Biol Cell 9:561–573

    PubMed  CAS  Google Scholar 

  42. Maroni P, Bendinelli P, Matteucci E, Desiderio MA (2007) HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28:267–279

    Article  PubMed  CAS  Google Scholar 

  43. Sliva D, Rizzo MT, English D (2002) Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 277:3150–3157

    Article  PubMed  CAS  Google Scholar 

  44. Brusewitz G, Cameron BD, Chasseaud LF, Gorler K, Hawkins DR, Koch H, Mennicke WH (1977) The metabolism of benzyl isothiocyanate and its cysteine conjugate. Biochem J 162:99–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Mid-career Researcher Program (2010-0006923) and a research grant from the National Research Foundation of Korea (NRF) for the Biofoods Research Program, Ministry of Education, Science, and Technology (MEST) and supported by the Ministry of Knowledge Economy through the Center for Efficacy Assessment and Development of Functional Foods and Drugs at Hallym University, Korea.

Conflict of interest

The authors have no conflicts of interests associated with this study to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Han Yoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.J., Eom, S.J., Hong, J.E. et al. Benzyl isothiocyanate inhibits basal and hepatocyte growth factor-stimulated migration of breast cancer cells. Mol Cell Biochem 359, 431–440 (2012). https://doi.org/10.1007/s11010-011-1039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1039-3

Keywords

Navigation