Skip to main content

Advertisement

Log in

Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Aberrant DNA methylation is a critical epigenetic process involved in gene expression of tumor cells. Diverse DNA methyltransferase inhibitors are being studied as potential anticancer drugs, and there is interest in developing novel and more effective DNMTIs. We evaluated zebularine, a stable and low-toxic cytidine analog, effects on human promyelocytic leukemia cell lines, NB4 and KG1. Zebularine caused a dose- and time-dependent NB4 and KG1 cell growth inhibition, did not induce myeloid differentiation but triggered concentration-dependent apoptosis as manifested by procaspase-3 and PAR-1 cleavage and the occurrence of early apoptosis detected by Annexin-V-propidium iodide. Zebularine co-treatment with all-trans retinoic acid (RA) at pharmacological dose (1 μM for NB4 cells) and higher (3 μM for KG1 cells) increased granulocytic differentiation in both cell lines. Pretreatment for 24 or 48 h with zebularine before the treatment with different doses of RA alone or RA with histone deacetylase inhibitors, phenyl butyrate, and BML-210, resulted in significant acceleration and enhancement of differentiation and cell cycle arrest at G0/1. Zebularine alone or in sequential combination with RA decreased expression of DNMT1, caused fast and time-dependent expression of pan-cadherin and partial demethylation of E-cadherin but not tumor suppressor p15. When used in combination with RA, zebularine increased expression of both genes transcript and protein. Zebularine induced regional chromatin remodeling by local histone H4 acetylation and histone H3-K4 methylation in promoter sites of methylated E-cadherin and also in the promoter of unmethylated p21 as evidenced by chromatin immunoprecipitation assay. Our results extend the spectrum of zebularine effects and the evaluation its utility in acute myeloid leukemia therapy based on epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APL:

Acute promyelocytic leukemia

RA:

All-trans retinoic acid

ChIP:

Chromatin immunoprecipitation

DMSO:

Dimethyl sulphoxide

GAPDH:

Glyceraldehide-3-phosphate dehydrogenase

HDACI:

Histone deacetylase inhibitor

NBT:

Nitro blue tetrazolium

PBS:

Phosphate-buffered saline

PMA:

Phorbol myristate acetate

PARP:

Poly(ADP-ribose) polymerase

PB:

Sodium phenyl butyrate

References

  1. de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t (15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347:559–561

    Google Scholar 

  2. He L-Z, Guidez E, Tribioli C et al (1998) Distinct interactions of PML-RAR alpha and PLZF-RAR alpha with co-repressors determine differential responses to RA in APL. Nat Genet 18:126–135

    Article  PubMed  CAS  Google Scholar 

  3. Lin RJ, Nagy I, Inoque S et al (1998) Role of histone deacetylase complex in acute promyelocytic leukemia. Nature 391:811–814

    Article  PubMed  CAS  Google Scholar 

  4. Grignani F, Gelmetti V, Fanelli M et al (1999) Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 18:6313–6321

    Article  PubMed  CAS  Google Scholar 

  5. Grignani F, Ferrucci PF, Testa U et al (1993) The acute promyelocytic leukemia-specific PML- RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74:423–431

    Article  PubMed  CAS  Google Scholar 

  6. Dyck JA, Maul GG, Miller WH et al (1994) A novel macromolecular structure is a target of the promyelocytic-retinoic acid receptor. Cell 76:333–343

    Article  PubMed  CAS  Google Scholar 

  7. Chen Z, Brand NJ, Chen A et al (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t (11; 17) translocation associated with acute promyelocytic leukemia. EMBO J 12:1161–1167

    PubMed  CAS  Google Scholar 

  8. Redner RL, Wang J, Liu JM (1999) Chromatin remodeling and leukemia: new therapeutic paradigms. Blood 94:417–428

    PubMed  CAS  Google Scholar 

  9. Lo Coco PG, Nervi F, Look C (2001) Histone deacetylase-targeted treatment restores retinoic acid signalling and differentiation in acute myeloid leukemia. Cancer Res 61:2–7

    PubMed  Google Scholar 

  10. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  PubMed  CAS  Google Scholar 

  11. Toyota M, Kopecky KJ, Toyota MO et al (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829

    Article  PubMed  CAS  Google Scholar 

  12. Paz MF, Fraga MF, Avila S et al (2003) A systematic profile of DNA methylation in human cancer cell lines. Cancer Res 63:1114–1121

    PubMed  CAS  Google Scholar 

  13. Teofilini L, Martini M, Luongo M et al (2003) Hypermethylation of CpG islands in the promoter region of p15 (INK4b) in acute promyelocytic leukemia represses p15 (INK4b) expression and correlates with poor prognosis. Leukemia 17:919–924

    Article  Google Scholar 

  14. Ekmekci CG, Gutierrez MI, Siraj AK et al (2004) Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol 77:233–240

    Article  PubMed  CAS  Google Scholar 

  15. Herman J, Merlo JJ, Baylin SB (1996) Hypermethylation-associated inactivation indicates a tumor suppressor role for p15 INK4b. Cancer Res 56:722–727

    PubMed  CAS  Google Scholar 

  16. Herman JG, Civin CI, Issa JP et al (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 57:837–841

    PubMed  CAS  Google Scholar 

  17. Cameron EE, Baylin SB, Herman JG (1999) p15INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445–2451

    PubMed  CAS  Google Scholar 

  18. Chim CS, Liang R, Ram CYY, Kwong YL (2002) Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 19:2033–2040

    Google Scholar 

  19. Agrawal S, Utenberg M, Koschmieder S et al (2007) DNA methylation of tumour suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukaemia. Cancer Res 67:1370–1377

    Article  PubMed  CAS  Google Scholar 

  20. Dodge JE, Minson C, List AF (2001) KG-1 and KG1a model the p15 CpG island methylation observed in acute myeloid leukaemia patients. Leuk Res 25:917–925

    Article  PubMed  CAS  Google Scholar 

  21. Nayera H, Shakankiry MD, Ghada I, Mossallam MD (2006) p15 (INK4B) and E-cadherin island methylation is frequent in Egyptian acute myeloid leukemia. J Egypt Nat Cancer Inst 18:227–232

    Google Scholar 

  22. Berg T, Guo Y, Abdekkarim M, Fliegauft M, Lubbert M (2007) Reversal of p15/Ink4b hypermethylation in AML1/ETO-positive and–negative myeloid leukemia cell lines. Leuk Res 31:496–506

    Article  Google Scholar 

  23. Ribeiro-Filho LA, Franks J, Sasaki M et al (2002) CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Mol Carcinog 34:187–198

    Article  PubMed  CAS  Google Scholar 

  24. Corn PG, Smith BD, Rukdeschel ES et al (2000) E-cadherin expression is silenced by 5′ CpG island methylation in acute myeloid leukemia. Clin Cancer Res 6:4243–4248

    PubMed  CAS  Google Scholar 

  25. Melki JR, Vincent PC, Brown RD, Clark SJ (2000) Hypermethylation of E-cadherin in leukemia. Blood 95:3208–3213

    PubMed  CAS  Google Scholar 

  26. Shimamoto T, Ohyashiki JH, Ohyashiki K (2005) Methylation of p15 (INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 6:653–659

    Article  Google Scholar 

  27. Farinha NJ, Shaker S, Lemaire M et al (2004) Activation of expression of p15, p73 and E-cadherin in leukemic cells by different concentrations of 5-aza-2′-deoxycytidine (decitabine). Anticancer Res 24:75–78

    PubMed  CAS  Google Scholar 

  28. Mund C, Brueckner B, Lyko F (2006) Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics 1:7–13

    Article  PubMed  Google Scholar 

  29. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  PubMed  CAS  Google Scholar 

  30. Lubbert M (2000) DNA methylation inhibitors in the treatment of leukemias, myelodisplastic syndromes and hemoglobinopathies: clinical results and possible mechanisms of action. Curr Top Microbiol Immunol 249:135–164

    Article  PubMed  CAS  Google Scholar 

  31. Stresemann C, Brueckner B, Musch T et al (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66:2080–2794

    Article  Google Scholar 

  32. Kim CH, Marquez VE, Mao DT et al (1986) Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 29:1374–1380

    Article  PubMed  CAS  Google Scholar 

  33. Hurd PJ, Whistmatsh AJ, Baldwin GS et al (1999) Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidone. J Mol Biol 286:389–401

    Article  PubMed  CAS  Google Scholar 

  34. Zhou L, Cheng X, Connolly BA et al (2002) Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 23:581–599

    Google Scholar 

  35. Cheng JC, Matsen CB, Gonzales FA et al (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95:399–409

    Article  PubMed  CAS  Google Scholar 

  36. Marquez VE, Kelly JA, Agbaria R et al (2005) Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. Ann N Y Acad Sci 1008:246–254

    Article  Google Scholar 

  37. Cheng JC, Weisenberger DJ, Gonzales FA et al (2004) Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 24:1270–1278

    Article  PubMed  CAS  Google Scholar 

  38. Scott SA, Lakshimikuttysamma A, Sheridan DP et al (2007) Zebularine inhibits human myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol 35:263–273

    Article  PubMed  CAS  Google Scholar 

  39. Veerla S, Panagopoulos I, Jin Y et al (2008) Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosom Cancer 47:358–378

    Article  Google Scholar 

  40. Collins S (1987) The HL-60 promyelocytic leukemia cell line: proliferation, differentiation and cellular oncogene expression. Blood 70:1233–1244

    PubMed  CAS  Google Scholar 

  41. Clayton AL, Rose S, Barrat MJ, Mahadevan LC (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19:3714–3726

    Article  PubMed  CAS  Google Scholar 

  42. El-Osta A, Kandharidis P, Zalcberg JR, Wolffe AP (2002) Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 22:1844–1857

    Article  PubMed  CAS  Google Scholar 

  43. Savickiene J, Borutinskaite V-V, Treigyte G et al (2006) The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on human leukemia cell lines. Europ J Pharmacol 549:9–18

    Article  CAS  Google Scholar 

  44. Savickiene J, Treigyte G, Magnusson K-E, Navakauskiene R (2009) Response of retinoic acid-resistant KG1 cells to combination of retinoic acid with diverse histone deacetylase inhibitors. Ann NY Acad Sci 1171:321–333

    Article  PubMed  CAS  Google Scholar 

  45. Cheng JC, Yoo CB, Weisenberger DJ, Chuang J et al (2004) Preferential response of cancer cells to zebularine. Cancer Cell 6:151–158

    Article  PubMed  CAS  Google Scholar 

  46. Fazi F, Travaglini L, Carotti D, Palitti F et al (2005) Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene 24:1820–1830

    Article  PubMed  CAS  Google Scholar 

  47. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  48. Drexler HG (1998) Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes, p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 12:845–859

    Article  PubMed  CAS  Google Scholar 

  49. Dodge JE, List AF, Fitscher BW (1998) Selective variegated methylation of the p15 island in acute myeloid leukemia. Int J Cancer 78:561–567

    Article  PubMed  CAS  Google Scholar 

  50. Solomon PR, Munirajan AK, Tsuchida N et al (2008) Promoter hypermethylation analysis in myeloplastic syndromes: diagnostic and prognostic implication. Indian J Med Res 127:52–57

    PubMed  CAS  Google Scholar 

  51. Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214

    Article  PubMed  CAS  Google Scholar 

  52. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  PubMed  CAS  Google Scholar 

  53. Kouzarides T (2002) Histone methylation in transcriptional control. Curr Opin Genet Dev 12:198–209

    Article  PubMed  CAS  Google Scholar 

  54. Litt MD, Simpson M, Gaszner M et al (2001) Correlation between histone lysine methylation and development changes at the chicken beta-globin locus. Science 28:2453–24555

    Article  Google Scholar 

  55. Nakayama J, Rice JC, Strahl BD et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  PubMed  CAS  Google Scholar 

  56. Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MecP2 recruit histone deacetylase to repress transcription. Nat Genet 19:181–187

    Article  Google Scholar 

  57. Nguyen CT, Weisenberger DJ, Valicescu M et al (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-Aza-2′-deoxycytidine. Cancer Res 62:6456–6461

    PubMed  CAS  Google Scholar 

  58. Lagger G, Doetzlhofer A, Scuettengruber B et al (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23:2669–2679

    Article  PubMed  CAS  Google Scholar 

  59. Scott SA, Dong WF, Ichinohasama R et al (2006) 5-Aza-2′-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res 30:69–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the Research Council of Lithuania (project No. LIG-20/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Navakauskiene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savickiene, J., Treigyte, G., Jonusiene, V. et al. Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol Cell Biochem 359, 245–261 (2012). https://doi.org/10.1007/s11010-011-1019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1019-7

Keywords

Navigation