Skip to main content
Log in

Pharmacological inhibition of HSP90 activity negatively modulates myogenic differentiation and cell survival in C2C12 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Heat-shock protein90 (HSP90) plays an essential role in maintaining stability and activity of its clients. HSP90 is involved in cell differentiation and survival in a variety of cell types. To elucidate the possible role of HSP90 in myogenic differentiation and cell survival, we examined the time course of changes in the expression of myogenic regulatory factors, intracellular signaling molecules, and anti-/pro-apoptotic factors when C2C12 cells were cultured in differentiation condition in the presence of a HSP90-specific inhibitor, geldanamycin. Furthermore, we examined the effects of geldanamycin on muscle regeneration in vivo. Our results showed that geldanamycin inhibited myogenic differentiation with decreased expression of MyoD, myogenin and reduced phosphorylation levels of Akt1. Geldanamycin had little effect on the phosphorylation levels of p38MAPK and ERK1/2 but reduced the phosphorylation levels of JNK. Along with myogenic differentiation, geldanamycin increased apoptotic nuclei with decreased expression of Bcl-2. The skeletal muscles forced to regenerate in the presence of geldanamycin were of poor repair with small regenerating myofibers and increased connective tissues. Together, our findings suggest that HSP90 may modulate myogenic differentiation and may be involved in cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  2. Sharp FR, Massa SM, Swanson RA (1999) Heat-shock protein protection. Trends Neurosci 22:97–99

    Article  PubMed  CAS  Google Scholar 

  3. Buchner J (1999) Hsp90 & Co. - a holding for folding. Trends Biochem Sci 24:136–141

    Article  PubMed  CAS  Google Scholar 

  4. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  PubMed  CAS  Google Scholar 

  5. Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671

    Article  PubMed  CAS  Google Scholar 

  6. Lele Z, Hartson SD, Martin CC, Whitesell L, Matts RL, Krone PH (1999) Disruption of zebrafish somite development by pharmacologic inhibition of Hsp90. Dev Biol 210:56–70

    Article  PubMed  CAS  Google Scholar 

  7. Sass JB, Martin CC, Krone PH (1999) Restricted expression of the zebrafish hsp90alpha gene in slow and fast muscle fiber lineages. Int J Dev Biol 43:835–838

    PubMed  CAS  Google Scholar 

  8. Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307:212–223

    Article  PubMed  CAS  Google Scholar 

  9. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    Article  PubMed  CAS  Google Scholar 

  10. Jiang BH, Aoki M, Zheng JZ, Li J, Vogt PK (1999) Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc Natl Acad Sci 96:2077–2081

    Article  PubMed  CAS  Google Scholar 

  11. Andrechek ER, Hardy WR, Girgis-Gabardo AA, Perry RL, Butler R, Graham FL, Kahn RC, Rudnicki MA, Muller WJ (2002) ErbB2 is required for muscle spindle and myoblast cell survival. Mol Cell Biol 22:4714–4722

    Article  PubMed  CAS  Google Scholar 

  12. Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K (1999) Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19:5073–5082

    PubMed  CAS  Google Scholar 

  13. Laprise P, Poirier EM, Vézina A, Rivard N, Vachon PH (2002) Merosin-integrin promotion of skeletal myofiber cell survival: differentiation state-distinct involvement of p60Fyn tyrosine kinase and p38alpha stress-activated MAP kinase. J Cell Physiol1 191:69–81

    Article  CAS  Google Scholar 

  14. Turjanski AG, Vaqué JP, Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene 26:3240–3253

    Article  PubMed  CAS  Google Scholar 

  15. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839–5845

    PubMed  CAS  Google Scholar 

  16. Zhang H, Wu W, Du Y, Santos SJ, Conrad SE, Watson JT, Grammatikakis N, Gallo KA (2004) Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. J Biol Chem 279:19457–19463

    Article  PubMed  CAS  Google Scholar 

  17. Davis MA, Carbott DE (1999) Herbimycin A and geldanamycin inhibit okadaic acid-induced apoptosis and p38 activation in NRK-52E renal epithelial cells. Toxicol Appl Pharmacol 161:59–74

    Article  PubMed  CAS  Google Scholar 

  18. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291

    Article  PubMed  CAS  Google Scholar 

  19. Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL (2000) p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 20:3951–3964

    Article  PubMed  CAS  Google Scholar 

  20. Khurana A, Dey CS (2004) Involvement of c-Jun N-terminal kinase activities in skeletal muscle differentiation. J Muscle Res Cell Motil 25:645–655

    Article  PubMed  CAS  Google Scholar 

  21. López-Maderuelo MD, Fernández-Renart M, Moratilla C, Renart J (2001) Opposite effects of the Hsp90 inhibitor Geldanamycin: induction of apoptosis in PC12, and differentiation in N2A cells. FEBS Lett 490:23–27

    Article  PubMed  Google Scholar 

  22. Cohen-Saidon C, Carmi I, Keren A, Razin E (2006) Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90beta. Blood 107:1413–1420

    Article  PubMed  CAS  Google Scholar 

  23. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  PubMed  CAS  Google Scholar 

  24. Kawai H, Nishino H, Kusaka K, Naruo T, Tamaki Y, Iwasa M (1990) Experimental glycerol myopathy: a histological study. Acta Neuropathol 80:192–197

    Article  PubMed  CAS  Google Scholar 

  25. Anderson LV, Davison K (1999) Multiplex Western blotting system for the analysis of muscular dystrophy proteins. Am J Pathol 154:1017–1022

    Article  PubMed  CAS  Google Scholar 

  26. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256

    Article  PubMed  CAS  Google Scholar 

  27. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230:758–766

    Article  PubMed  CAS  Google Scholar 

  28. Shainberg A, Yagil G, Yaffe D (1971) Alterations of enzymatic activities during muscle differentiation in vitro. Dev Biol 25:1–29

    Article  PubMed  CAS  Google Scholar 

  29. Yablonka Z, Yaffe D (1977) Synthesis of myosin light chains and accumulation of translatable mRNA coding for light chain-like polypeptides in differentiating muscle cultures. Differentiation 8:133–143

    Article  PubMed  CAS  Google Scholar 

  30. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  Google Scholar 

  31. Gonzalez I, Tripathi G, Carter EJ, Cobb LJ, Salih DA, Lovett FA, Holding C, Pell JM (2004) Akt2, a novel functional link between p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways in myogenesis. Mol Cell Biol 24:3607–3622

    Article  PubMed  CAS  Google Scholar 

  32. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  PubMed  CAS  Google Scholar 

  33. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  PubMed  CAS  Google Scholar 

  34. Bornman L, Polla BS, Lotz BP, Gericke GS (1995) Expression of heat-shock/stress proteins in Duchenne muscular dystrophy. Muscle Nerve 18:23–31

    Article  PubMed  CAS  Google Scholar 

  35. Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1:53–60

    Article  PubMed  Google Scholar 

  36. Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci 93:14536–14541

    Article  PubMed  CAS  Google Scholar 

  37. Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12:5059–5068

    PubMed  CAS  Google Scholar 

  38. Rotwein P, Wilson EM (2009) Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. J Cell Physiol 219:503–511

    Article  PubMed  CAS  Google Scholar 

  39. Wilson EM, Rotwein P (2007) Selective control of skeletal muscle differentiation by Akt1. J Biol Chem 282:5106–5110

    Article  PubMed  CAS  Google Scholar 

  40. Yun BG, Matts RL (2005) Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal 17:1477–1485

    Article  PubMed  CAS  Google Scholar 

  41. Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    Article  PubMed  CAS  Google Scholar 

  42. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  PubMed  CAS  Google Scholar 

  43. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci 98:10983–10985

    Article  PubMed  CAS  Google Scholar 

  44. Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277:10346–10353

    Article  PubMed  CAS  Google Scholar 

  45. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci 97:10832–10837

    Article  PubMed  CAS  Google Scholar 

  46. Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA (2006) Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 11:583–589

    Article  PubMed  CAS  Google Scholar 

  47. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  PubMed  CAS  Google Scholar 

  48. Gallo KA, Johnson GL (2002) Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3:663–672

    Article  PubMed  CAS  Google Scholar 

  49. Rana A, Gallo K, Godowski P, Hirai S, Ohno S, Zon L, Kyriakis JM, Avruch J (1996) The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 271:19025–19028

    Article  PubMed  CAS  Google Scholar 

  50. Merritt SE, Mata M, Nihalani D, Zhu C, Hu X, Holzman LB (1999) The mixed lineage kinase DLK utilizes MKK7 and not MKK4 as substrate. J Biol Chem 274:10195–10202

    Article  PubMed  CAS  Google Scholar 

  51. Vasilevskaya IA, Rakitina TV, O’Dwyer PJ (2003) Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of Cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res 63:3241–3246

    PubMed  CAS  Google Scholar 

  52. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  53. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  54. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1342

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111:769–779

    PubMed  CAS  Google Scholar 

  56. Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, Zammit PS, Matsuda R (2006) Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J Histochem Cytochem 54:375–384

    Article  PubMed  CAS  Google Scholar 

  57. Dominov JA, Dunn JJ, Miller JB (1998) Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J Cell Biol 142:537–544

    Article  PubMed  CAS  Google Scholar 

  58. Füchtbauer EM, Westphal H (1992) MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn 193:34–39

    Article  PubMed  Google Scholar 

  59. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021

    Article  PubMed  CAS  Google Scholar 

  60. Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H (1991) Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315

    Article  PubMed  CAS  Google Scholar 

  61. Davis RL, Cheng P, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle specific gene activation. Cell 60:733–746

    Article  PubMed  CAS  Google Scholar 

  62. Kayani AC, Close GL, Broome CS, Jackson MJ, McArdle A (2008) Enhanced recovery from contraction-induced damage in skeletal muscles of old mice following treatment with the heat shock protein inducer 17-(allylamino)-17-demethoxygeldanamycin. Rejuvenation Res 11:1021–1030

    Article  PubMed  CAS  Google Scholar 

  63. McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357

    PubMed  CAS  Google Scholar 

  64. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22:385–3836

    Article  Google Scholar 

  65. Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, Rudnicki MA, Hollenbach AD, Guttridge DC (2008) IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol 180:787–802

    Article  PubMed  CAS  Google Scholar 

  66. Luo S, Zhang B, Dong XP, Tao Y, Ting A, Zhou Z, Meixiong J, Luo J, Chiu FC, Xiong WC, Mei L (2008) HSP90 beta regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 60:97–110

    Article  PubMed  CAS  Google Scholar 

  67. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    Article  PubMed  CAS  Google Scholar 

  68. Donnelly A, Blagg BSJ (2008) Novobiocin and additional inhibitors of the Hsp90 C-Terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  PubMed  CAS  Google Scholar 

  69. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  PubMed  CAS  Google Scholar 

  70. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  PubMed  CAS  Google Scholar 

  71. Holzbeierlein JM, Windsperger A, Vielhauer G (2010) Hsp90: a drug target? Curr Oncol Rep 12:95–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the MEXT (The Ministry of Education, Culture, Sports, Science and Technology) (Grant-in Aid for Scientific Research (C), 22500658) Japan. This research was also supported in part by The Ichiro Kanehara Foundation, Comprehensive Research on Disability Health and Welfare (H22-ShinkeiKin-Ippan-016) and Nervous and Mental Disorders (20B-13) from MHLW (The Ministry of Health, Labour and Welfare) Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Wagatsuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagatsuma, A., Shiozuka, M., Kotake, N. et al. Pharmacological inhibition of HSP90 activity negatively modulates myogenic differentiation and cell survival in C2C12 cells. Mol Cell Biochem 358, 265–280 (2011). https://doi.org/10.1007/s11010-011-0977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0977-0

Keywords

Navigation