Skip to main content

Advertisement

Log in

Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SIAH-1, an E3 ubiquitin ligase, plays an important role in regulating cell cycle, tumorigenesis and several neurodegenerative diseases. In this study, we found a novel SIAH-1-interacting protein, EEF1D (Eukaryotic translation elongation factor 1 delta). The interaction was confirmed in vitro and in vivo, and both proteins were co-localized in the cytoplasm. The Cys-rich domain of SIAH-1 was essential for its interaction with EEF1D. Overexpressing SIAH-1 had no effect on the protein level of EEF1D, implying that EFF1D is not the substrate of SIAH-1. In contrast, the protein level of SIAH-1 increased significantly in the cells overexpressing EEF1D. Increased amount of SIAH-1 was caused by the EEF1D-mediated inhibition of auto-ubiquitination and degradation of SIAH-1. Furthermore, EEF1D was able to inhibit the degradation of HPH2, a known substrate of SIAH-1. Taken together, our data suggest EFF1D functions as a novel negative regulator of SIAH-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ciechanover A, Heller H, Katz-Etzion R, Hershko A (1981) Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc Natl Acad Sci USA 78(2):761–765

    Article  PubMed  CAS  Google Scholar 

  2. Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme. Mechanism and role in protein–ubiquitin conjugation. J Biol Chem 257(5):2543–2548

    PubMed  CAS  Google Scholar 

  3. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13):8206–8214

    PubMed  CAS  Google Scholar 

  4. Carthew RW, Rubin GM (1990) Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63(3):561–577

    Article  PubMed  CAS  Google Scholar 

  5. Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER (1997) Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46(1):103–111

    Article  PubMed  CAS  Google Scholar 

  6. Hu G, Fearon ER (1999) Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol 19(1):724–732

    PubMed  CAS  Google Scholar 

  7. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96(20):11364–11369

    Article  PubMed  CAS  Google Scholar 

  8. Hu G, Zhang S, Vidal M, Baer JL, Xu T, Fearon ER (1997) Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev 11(20):2701–2714

    Article  PubMed  CAS  Google Scholar 

  9. Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L (2002) Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 277(12):10273–10282

    Article  PubMed  CAS  Google Scholar 

  10. Susini L, Passer BJ, Amzallag-Elbaz N, Juven-Gershon T, Prieur S, Privat N, Tuynder M, Gendron MC, Israel A, Amson R, Oren M, Telerman A (2001) Siah-1 binds and regulates the function of Numb. Proc Natl Acad Sci USA 98(26):15067–15072

    Article  PubMed  CAS  Google Scholar 

  11. Germani A, Bruzzoni-Giovanelli H, Fellous A, Gisselbrecht S, Varin-Blank N, Calvo F (2000) SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene 19(52):5997–6006

    Article  PubMed  CAS  Google Scholar 

  12. Boehm J, He Y, Greiner A, Staudt L, Wirth T (2001) Regulation of BOB.1/OBF.1 stability by SIAH. EMBO J 20(15):4153–4162

    Article  PubMed  CAS  Google Scholar 

  13. Wu H, Lin Y, Shi Y, Qian W, Tian Z, Yu Y, Huo K (2010) SIAH-1 interacts with mammalian polyhomeotic homologues HPH2 and affects its stability via the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 397(3):391–396

    Article  PubMed  CAS  Google Scholar 

  14. Roperch JP, Lethrone F, Prieur S, Piouffre L, Israeli D, Tuynder M, Nemani M, Pasturaud P, Gendron MC, Dausset J, Oren M, Amson RB, Telerman A (1999) SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1). Proc Natl Acad Sci USA 96(14):8070–8073

    Article  PubMed  CAS  Google Scholar 

  15. Fiucci G, Beaucourt S, Duflaut D, Lespagnol A, Stumptner-Cuvelette P, Geant A, Buchwalter G, Tuynder M, Susini L, Lassalle JM, Wasylyk C, Wasylyk B, Oren M, Amson R, Telerman A (2004) Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc Natl Acad Sci USA 101(10):3510–3515

    Article  PubMed  CAS  Google Scholar 

  16. Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2006) Dimerization of hSiah proteins regulates their stability. Biochem Biophys Res Commun 348(3):857–863

    Article  PubMed  CAS  Google Scholar 

  17. Park TJ, Hamanaka H, Ohshima T, Watanabe N, Mikoshiba K, Nukina N (2003) Inhibition of ubiquitin ligase Siah-1A by disabled-1. Biochem Biophys Res Commun 302(4):671–678

    Article  PubMed  CAS  Google Scholar 

  18. Riis B, Rattan SI, Clark BF, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 15(11):420–424

    Article  PubMed  Google Scholar 

  19. Morales J, Cormier P, Mulner-Lorillon O, Poulhe R, Belle R (1992) Molecular cloning of a new guanine nucleotide-exchange protein, EF1 delta. Nucleic Acids Res 20(15):4091

    Article  PubMed  CAS  Google Scholar 

  20. Kawaguchi Y, Bruni R, Roizman B (1997) Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects translational machinery. J Virol 71(2):1019–1024

    PubMed  CAS  Google Scholar 

  21. Xiao H, Neuveut C, Benkirane M, Jeang KT (1998) Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun 244(2):384–389

    Article  PubMed  CAS  Google Scholar 

  22. Joseph P, Lei YX, Ong TM (2004) Up-regulation of expression of translation factors—a novel molecular mechanism for cadmium carcinogenesis. Mol Cell Biochem 255(1–2):93–101

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Chen Q, Zhang JT (2004) Tumor suppressor gene 14-3-3sigma is down-regulated whereas the proto-oncogene translation elongation factor 1delta is up-regulated in non-small cell lung cancers as identified by proteomic profiling. J Proteome Res 3(4):728–735

    Article  PubMed  CAS  Google Scholar 

  24. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95(15):8847–8851

    Article  PubMed  Google Scholar 

  25. Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63(12):3043–3048

    PubMed  CAS  Google Scholar 

  26. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926

    Article  PubMed  CAS  Google Scholar 

  27. Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y (2007) SIAH1 causes growth arrest and apoptosis in hepatoma cells through beta-catenin degradation-dependent and -independent mechanisms. Oncol Rep 17(3):549–556

    PubMed  CAS  Google Scholar 

  28. Jacob AN, Kandpal G, Kandpal RP (1996) Isolation of expressed sequences that include a gene for familial breast cancer (BRCA2) and other novel transcripts from a five megabase region on chromosome 13q12. Oncogene 13(1):213–221

    PubMed  CAS  Google Scholar 

  29. Kolettas E, Lymboura M, Khazaie K, Luqmani Y (1998) Modulation of elongation factor-1 delta (EF-1 delta) expression by oncogenes in human epithelial cells. Anticancer Res 18(1A):385–392

    PubMed  CAS  Google Scholar 

  30. Ogawa K, Utsunomiya T, Mimori K, Tanaka Y, Tanaka F, Inoue H, Murayama S, Mori M (2004) Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma. Br J Cancer 91(2):282–286

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yan-Hua Wu for critical reading of the manuscript. This study is supported by grants from the National Basic Research Program of China (2010CB912603), National Special Key Project of China (2008ZX10003-006 and 2009ZX09301-011) to K. Huo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Shi, Y., Lin, Y. et al. Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1. Mol Cell Biochem 357, 209–215 (2011). https://doi.org/10.1007/s11010-011-0891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0891-5

Keywords

Navigation