Skip to main content
Log in

Association of lipoprotein lipase and apolipoprotein C-III genes polymorphism with acute myocardial infarction in diabetic patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lipoprotein lipase (LPL) and Apolipoprotein C-III (APOC-III) play an important role in lipid metabolism. The aim of this study was to explore the possible associations of the gene polymorphisms (LPL HindIII, LPL Ser447-Ter and APOC3 SstI), diabetes mellitus, and plasma lipids with myocardial infarction. The polymorphisms were assessed by restriction assay in 200 Egyptian MI patients (100 diabetic and 100 non-diabetic) and 100 healthy controls. This study demonstrated that individuals with the H2H2 genotype or S2 allele have more than three times higher relative risk of suffering from MI than those carrying the H1H1 or S1S1. Type 2 DM mainly lowers HDL-C levels in MI patients who carry H2H2 or S2S2 genotype and increases TC, TG, and LDL levels in MI patients carrying H2H2 or S2S2 genotype compared with non-diabetic MI patients carrying the same genotypes. In S447X polymorphism, it was observed that DM led to loss of the protective lipid profile in MI patients carrying 447XX genotype. These findings suggest that H2H2 or S2S2 genotypes are associated with dyslipidemia and increased risk of myocardial infarction. The S447X polymorphism is associated with a favorable lipid profile. However, the association of diabetes mellitus with these polymorphisms leads to unfavorable lipid profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association (1993) Detection and management of lipid disorders in diabetes. Diabetes Care 16:828–834

    Google Scholar 

  2. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Non-fasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308

    Article  CAS  PubMed  Google Scholar 

  3. Jensen MK, Rimm EB, Rader D, Schmidt EB, Sørensen IA, Vogel U, Overvad K, Mukamal KJ (2009) S447X variant of the lipoprotein lipase gene, lipids, and risk of coronary heart disease in 3 prospective cohort studies. Am Heart J 157:384–390

    Article  CAS  PubMed  Google Scholar 

  4. Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R (2002) Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 13:471–481

    Article  CAS  PubMed  Google Scholar 

  5. Murthy V, Julien P, Gagne C (1996) Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 70:101–135

    Article  CAS  PubMed  Google Scholar 

  6. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF (1998) DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 19:233–240

    Article  CAS  PubMed  Google Scholar 

  7. Rip J, Nierman MC, Ross CJ, Jukema JW, Hayden MR, Kastelein JJ, Stroes ES, Kuivenhoven JA (2006) Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol 26:1236–1245

    Article  CAS  PubMed  Google Scholar 

  8. Holmer SR, Hengstenberg C, Mayer B, Doring A, Lowel H, Engel S, Hense H, Wolf M, Klein G, Riegger G, Schunkert H (2000) Lipoprotein lipase gene polymorphism, cholesterol subfractions and myocardial infarction in large samples of the general population. Cardiovasc Res 47:806–812

    Article  CAS  PubMed  Google Scholar 

  9. Ross CJ, Liu G, Kuivenhoven JA, Twisk J, Rip J, van Dop W, Excoffon KJ, Lewis SM, Kastelein JJ, Hayden MR (2005) Complete rescue of lipoprotein lipase–deficient mice by somatic gene transfer of the naturally occurring LPLS447X beneficial mutation. Arterioscler Thromb Vasc Biol 25:2143–2150

    Article  CAS  PubMed  Google Scholar 

  10. Huang AQ, Hu YH, Zhan SY, Xu B, Pang ZC, Cao WH, Lu J, Qin Y, Lee LM (2006) Lipoprotein lipase gene S447X polymorphism modulates the relation between central obesity and serum lipids, a twin study. Int J Obes (Lond) 30:1693–1701

    Article  CAS  Google Scholar 

  11. Windler E, Havel RJ (1985) Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res 26:556–565

    CAS  PubMed  Google Scholar 

  12. López-Miranda J, Jansen S, Ordovas JM, Salas J, Marín C, Castro P, Ostos MA, Cruz G, López-Segura F, Blanco A, Jiménez-Perepérez J, Pérez-Jiménez F (1997) Influence of the Sstl polymorphism at the apolipoprotein C-Ill gene locus on the plasma low-density-lipoprotein cholesterol response to dietary monounsaturated fat. Am J Clin Nut 66:97–103

    Google Scholar 

  13. Hoffer MJ, Sijbrands EJ, De Man FH, Havekes LM, Smelt AH, Frants RR (1998) Increased risk for endogenous hypertriglyceridemia is associated with an apolipoprotein C3 haplotype specified by the SstI polymorphism. Eur J Clin Invest 28:807–812

    Article  CAS  PubMed  Google Scholar 

  14. Ma YQ, Thomas GN, Ng MC, Critchley JA, Chan JC, Tomlinson B (2003) The lipoprotein lipase gene HindIII polymorphism is associated with lipid levels in early-onset type 2 diabetic patients. Metabolism 52:338–343

    Article  CAS  PubMed  Google Scholar 

  15. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A (1994) Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90:583–612

    CAS  PubMed  Google Scholar 

  16. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  17. Wahlefeld AW (1974) Triglycerides: determination after enzymatic hydrolysis. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Verlag Chemie Wienheim/Academic Press Inc, New York, pp 1831–1835

    Google Scholar 

  18. Warnick GR, Nguyen T, Albers AA (1985) Comparison of improved precipitation methods for quantification of high-density lipoprotein cholesterol. Clin Chem 31:217–222

    CAS  PubMed  Google Scholar 

  19. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  20. Mattu RK, Needham EW, Morgan R, Rees A, Hackshaw AK, Stocks J, Elwood PC, Galton DJ (1994) DNA variants at the LPL gene locus associate with angiographically defined severity of atherosclerosis and serum lipoprotein levels in a Welsh population. Arterioscler Thromb 14:1090–1097

    Article  CAS  PubMed  Google Scholar 

  21. Singh P, Singh M, Bhatnagar DP, Kaur T, Mastana S (2008) Apolipoprotein C3 (SstI) gene variability in Northwest India: a global perspective. Int J Hum Genet 8:51–60

    CAS  Google Scholar 

  22. Carr MC, Brunzell JD (2004) Abdominal obesity and dyslipidemia in themetabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89:2601–2607

    Article  CAS  PubMed  Google Scholar 

  23. Groenemeijer BE, Hallman MD, Reymer PW, Gagné E, Kuivenhoven JA, Bruin T, Jansen H, Lie KI, Bruschke AV, Boerwinkle E, Hayden MR, Kastelein JJ (1997) Genetic variant showing a positive interaction with b-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients. The Ser 447-stop substitution in the lipoprotein lipase gene. REGRESS study group. Circulation 95:2628–2635

    CAS  PubMed  Google Scholar 

  24. Enerbäck S, Ohlsson BG, Samuelsson L, Bjursell G (1992) Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-a and LP-b, of importance for the differentiation-linked induction of the LPL gene during adipogenesis. Mol Cell Biol 12:4622–4633

    PubMed  Google Scholar 

  25. Senti M, Bosch M, Aubo C, Elosua R, Masia R, Marrugat J (2000) Relationship of abdominal adiposity and dyslipemic status in women with a common mutation in the lipoprotein lipase gene. Atherosclerosis 150:135–141

    Article  CAS  PubMed  Google Scholar 

  26. Jemaa R, Fumeron F, Poirier O, Lecerf L, Evans A, Arveiler D, Luc G, Cambou JP, Bard JM, Fruchart JC, Apfelbaum M, Cambien F, Tiret L (1995) Lipoprotein lipase gene polymorphisms: associations with myocardial infarction and lipoprotein levels, the ECTIM study. Etude Cas Temoin sur l’Infarctus du Myocarde. J Lipid Res 36:2141–2146

    CAS  PubMed  Google Scholar 

  27. Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ (1998) Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides—the European atherosclerosis research study (EARS). Arterioscler Thromb Vasc Biol 18:526–534

    Article  CAS  PubMed  Google Scholar 

  28. Wittrup HH, Tybjaerg-Hansen A, Nordestgaard BG (1999) Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 99:2901–2907

    CAS  PubMed  Google Scholar 

  29. Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, Teramoto T, Sasaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Egashira T, Hattori H, Shirahashi N, Kita T (2005) Polymorphisms in four genes related to triglyceride and HDL-cholesterol levels in the general Japanese population in 2000. J Atheroscler Thromb 12:240–250

    Article  CAS  PubMed  Google Scholar 

  30. Mc-Gladdery SH, Pimstone SN, Clee SM, Bowden JF, Hayden MR, Frohlich JJ (2001) Common mutations in the lipoprotein lipase gene (LPL): effects on HDL-cholesterol levels in a Chinese Canadian population. Atherosclerosis 156:401–407

    Article  CAS  Google Scholar 

  31. Corella D, Guillen M, Saiz C, Portoles O, Sabater A, Folch J, Ordovas JM (2002) Associations of LPL and APOC3 gene polymorphisms on plasma lipids in a Mediterranean population: interaction with tobacco smoking and the APOE locus. J Lipid Res 43:416–427

    CAS  PubMed  Google Scholar 

  32. Thu NN, Mai TT, Ohmori R, Kuroki M, Chuyen NV, Hung NT, Kawakami M, Kondo K (2006) Plasma triglyceride and HDL-cholesterol concentrations in Vietnamese girls are affected by lipoprotein lipase, but not apolipoprotein CIII polymorphism. J Nutr 136:1488–1492

    CAS  PubMed  Google Scholar 

  33. Rees A, Shoulders CC, Stocks J, Galton DJ, Baralle FE (1983) DNA polymorphism adjacent to human apoprotein A-1 gene: relation to hypertriglyceridaemia. Lancet 1:444–446

    Article  CAS  PubMed  Google Scholar 

  34. Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249:790–793

    Article  CAS  PubMed  Google Scholar 

  35. Haviland MB, Kessling AM, Davignon J, Sing CF (1991) Estimation of Hardy–Weinberg and pairwise disequilibrium in the apolipoprotein AI-CIII-AIV gene cluster. Am J Hum Genet 49:350–365

    CAS  PubMed  Google Scholar 

  36. Bruzz M, Fripp Y, Mitchell RJ (2001) Apolipoprotein AI and CIII gene polymorphism and their association with lipid levels in Italian, Greek and Anglo-Irish population of Australian. Ann Hum Biol 28:481–490

    Article  Google Scholar 

  37. Ordovas JM, Civeira F, Genest J, Craig S, Robbins AH, Meade T, Pocovi M, Frossard PM, Masharani U, Wilson PW (1991) Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease. Atherosclerosis 87:75–86

    Article  CAS  PubMed  Google Scholar 

  38. Liu S, Song Y, Hu F, Niu T, Ma J, Gaziano M, Stampfer M (2004) A prospective study of the APOA1 XmnI and APOC3 SstI polymorphisms in the APOA1/C3/A4 gene cluster and risk of incident myocardial infarction in men. Atherosclerosis 177:119–126

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Martinez P, Gomez P, Paz E, Marin C, Gavilan-Moral E, Lopez-Miranda J, Ordovas JM, Fernandezm de la Puebla RA, Perez-Jimenez F (2001) Interaction between smoking and the Sstl polymorphism of the apo C-III gene determines plasma lipid response to diet. Nutr Metab Cardiovasc Dis 11:237–243

    CAS  PubMed  Google Scholar 

  40. Wang XL, McCredie RM, Wilcken DE (1996) Common DNA polymorphisms at the lipoprotein lipase gene. Association with severity of coronary artery disease and diabetes. Circulation 93:1339–1345

    CAS  PubMed  Google Scholar 

  41. Ukkola O, Savolainen MJ, Salmela PI, Von Dickhoff K, Kesäniemi YA (1995) DNA polymorphisms at the lipoprotein lipase gene are associated with macroangiopathy in type 2 (non-insulin-dependent) diabetes mellitus. Atherosclerosis 115:99–105

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha H. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El-Aziz, T.A., Mohamed, R.H. & Hashem, R.M. Association of lipoprotein lipase and apolipoprotein C-III genes polymorphism with acute myocardial infarction in diabetic patients. Mol Cell Biochem 354, 141–150 (2011). https://doi.org/10.1007/s11010-011-0813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0813-6

Keywords

Navigation